iView X[™] System Manual Version 2.7 March 2011 # **Table of Contents** | Part I | Introduction | 2 | |----------|----------------------------------|----| | | 1 How to read this document | 2 | | | 2 Important Notice | 3 | | | 3 Explanation of Symbols | 4 | | | 4 License Agreement and Warranty | 5 | | | 5 Copyright and Trademarks | 11 | | | 6 About SMI | 12 | | Part II | About Eye Tracking | 15 | | | 1 Types of Eye Tracking | 15 | | | 2 Common Types of Eye Movements | 16 | | | 3 Eye Tracking Methods | 17 | | | 4 Head Movements | 18 | | | 5 Calibration | 19 | | | 6 Further Reading | 20 | | Part III | How iView X works | 22 | | | 1 Eye Tracking Method | 22 | | | 2 | General System Layout | 23 | |---------|---|-------------------------------------|----| | | 3 | Eye Tracking Camera Systems | 27 | | | 4 | System Output | 28 | | Part IV | S | oftware Installation | 31 | | | 1 | Licensing Process | 31 | | | | Licensing by Email | 32 | | | | Transfer Licence | | | | | Add/Remove Components | 33 | | | | Terminate Licence | 34 | | | | Time-limited Licence | 35 | | | | Reusable Licence | 36 | | | 2 | Software Update | 36 | | Part V | Q | uick Start Guide | 40 | | | 1 | HED 4 | 40 | | | | Experiment Preparation | 40 | | | | Step 1 - Camera Adjustments | | | | | Step 2 - Prepare for Calibration | | | | | Step 3 - Execute Calibration | 45 | | | | Step 4 - Study/Experiment Execution | | | | | Step 5 - Analysis | 48 | | | 2 | RED | 49 | | | | Experiment Preparation | 49 | | | | Test Person Placement | | | | | Run Experiment | 51 | | | 3 | Hi-Speed | 52 | | | | Experiment Preparation | 52 | | | | Eye Camera Setup | | | | | Run Experiment | | | | | ran Esponinon | | | Part VI | В | asic Functions | 58 | |----------|---|--|----| | | 1 | Start Program | 60 | | | 2 | Network Connection to iView X | 60 | | | | Using SMI Experiment Center | 63 | | | | Using Presentation Interface | | | | 3 | Calibration | 65 | | | | Calibrating with SMI Experiment Center | 69 | | | | Calibrating with WinCAL | | | | | Computer Screen With Static Calibration Points | 70 | | | | Using Remote Commands | 70 | | | | Manual Calibration | 71 | | | | Drift Correction | 72 | | | | Validation | 73 | | | | Moving Calibration Points | 74 | | | 4 | Data Recording | 75 | | | | Automated Data Recording | 75 | | | | Manual Data Recording | 77 | | | 5 | Analysis | 78 | | Part VII | S | ystem User Guide | 80 | | | 1 | iView X HED 4 | 80 | | | | Features and Benefits | 81 | | | | Hardware Components | 83 | | | | HED 4 Camera | 84 | | | | HED 4 Scene Camera Lenses | 85 | | | | User Guide | 85 | | | | Initialization of Software | | | | | Adjust Camera and Eye Video | 89 | | | | Adjust Scene Video | 90 | | | | Calibration | 92 | | | | Record and Save | 97 | | | Safety Notes | 97 | |---|--------------------------------------|-----| | | Maintenance | 100 | | 2 | iView X HED-MHT | 100 | | _ | Hardware Components | | | | HED-MHT with Polhemus Fastrak System | | | | User Guide | | | | Licensing | | | | The Measurement Model | | | | The Transmitter | | | | Plane Definition | | | | Plane Properties | | | | Surveying a single plane | | | | Points on a Plane | | | | Objects on a Plane | | | | Calibration Plane | | | | Adding Head Tracking HED to iView X | 119 | | | Initialization of Software | | | | Operating Procedure | 124 | | | Lasermeter Calibration | | | | Safety Notes | 131 | | | Maintenance | 135 | | 3 | iView X RED 4 (FireWire) | 136 | | | Features and Benefits | 137 | | | Hardware Components | | | | RED 4 (FireWire): ET Module | | | | Illumination Controller (E-Box) | 140 | | | User Guide | | | | Experimental Setup Examples | 142 | | | Initialization of Software | | | | Modes of Operation | 146 | | | Test Person Placement | 156 | | | Run Experiment | 157 | | | Safety Notes | 157 | | | Maintenance | 161 | | | Technical Data | 162 | | | RFD 4 (FireWire) F-Box | 162 | | 4 | RED, RED250, RED500 | 165 | |---|-------------------------------------|-----| | | Features and Benefits | 166 | | | Hardware Components | 167 | | | ET module RED / RED250 / RED500 | 168 | | | User Guide | 169 | | | Experimental Setup Examples | 170 | | | Initialization of Software | 171 | | | Modes of Operation | 174 | | | Test Person Placement | 182 | | | Run Experiment | 183 | | | Safety Notes | 183 | | | Maintenance | 187 | | | Technical Data | 188 | | | Pow er Supply RED / RED250 / RED500 | 188 | | 5 | iView X Hi-Speed | 191 | | | Features and Benefits | 192 | | | Hardware Components and Wiring | 193 | | | Hi-Speed Tracking Column | | | | Hi-Speed Wiring with Stimulus PC | 203 | | | User Guide | 205 | | | Experimental Setup | 205 | | | Initialization of Software | 206 | | | Tracking Column Adjustment | 211 | | | Run Experiment | 214 | | | Safety Notes | 215 | | | Maintenance | 219 | | | Technical Data | 220 | | | Tracking Column Pow er Supply | 220 | | 6 | iView X Hi-Speed Primate | 222 | | | Hardware Components and Wiring | 223 | | | Primate Camera | 224 | | | User Guide | 229 | | | Initialization of Software | 230 | | | Adjust Eye Video | 231 | | | Run Experiment | | | | Safety Notes | 233 | | | | Maintenance | 237 | |-----------|----|------------------------------------|-----| | | | Technical Data | 238 | | | | Hi-Speed Primate Pow er Supply | 238 | | | 7 | iView X MRI | 240 | | | | MRI-LR: Features | 242 | | | | MRI Silent Vision: Features | 242 | | | | General Considerations | 244 | | | | MRI-LR | 245 | | | | Modes of Operation | 246 | | | | System Installation | 247 | | | | Operating Procedure | 255 | | | | Pow er Supply | 259 | | | | MRI Silent Vision | 262 | | | | Experiment Setup | 262 | | | | Softw are Setup | 262 | | | | Calibration Setup | 263 | | | | Ethernet Connection to Stimulus PC | 264 | | | | Run Experiment | 264 | | | | Safety Notes | 264 | | | | Maintenance | 269 | | | 8 | MEG250 | 270 | | | | Hardware Components and Wiring | 271 | | | | Operating Procedure | | | | | Initialization of Software | | | | | Eye Image Adjustment | 278 | | | | Run Experiment | | | | | Safety Notes | | | | | Maintenance | | | Part VIII | iV | iew Data File (IDF) | 285 | | | 1 | IDF Utilities | 285 | | | | IDF Converter | | | | | IDF Converter Export Configuration | | | | | Event Detector | | | | | Event Detector Configuration | | | | | Eveni Detector Conniguration | 290 | | | | Built-In Event Detector | 294 | |---------|---|---------------------------|-----| | | 2 | ASCII File Format | 299 | | | | Header | 300 | | | | Data Section | 303 | | | | Message Output Format | 305 | | Part IX | A | pplication User Interface | 308 | | | 1 | The Workspace | 308 | | | 2 | Menu Commands | 309 | | | | File | 309 | | | | Open Scene Image | 310 | | | | Open AOI | 310 | | | | Open Calibration | 311 | | | | Save AOI | 311 | | | | Save Calibration | 311 | | | | Save Data | 312 | | | | Clear Recording Buffer | 312 | | | | Exit | 312 | | | | Recording | 312 | | | | Start | 313 | | | | Stop | 313 | | | | Increment Trial No | 313 | | | | Calibration | 314 | | | | Start | 314 | | | | Stop | 315 | | | | Auto Accept | 315 | | | | Drift Correction | 315 | | | | Validation | 316 | | | | Edit Points | 316 | | | | Setup | 316 | | | | Hardw are | 317 | | | | Tracking | 339 | | | | Stimulus | 342 | | | | Calibration | 342 | | | | Output | 354 | | | | Recording Notes | 364 | |--------|---|--|-----| | | | Save Setup | 367 | | | | View | 367 | | | | Toolbar | 368 | | | | Status Bar | 369 | | | | Online Data | 370 | | | | Eye Image Control | 372 | | | | Direct Calibration Controls | 387 | | | | AOI Configuration | 388 | | | | Performance Measures | 390 | | | | RED Tracking Monitor | 391 | | | | System Log | 391 | | | | Configure Logging | 395 | | | | Select and Manage Views | 395 | | | | Help | 396 | | | | Help Topics | 397 | | | | Tutorials | 398 | | | | System Info | 398 | | | | License | 398 | | | | About iView | 399 | | | | Tip of the day | 399 | | | 3 | iView X Hotkeys | 399 | | | 4 | Warnings and Error Messages | 400 | | | | Missing DLL: clser*.dll | 400 | | | | Cannot connect to RED | | | | | | | | Part X | M | lore System Functions | 402 | | | 1 | Advanced Eye Image Adjustment | 402 | | | 2 | Analog Gain/Offset Calibration | 403 | | | 3 | Area of Interest (AOI) | 408 | | | | How to draw an AOI on a stimulus image | 409 | | | 4 | Audio Recording | 410 | | | Audio FAQs section | 411 | |----|---|-----| | | How do I test Sound Recording? | 411 | | | I tested with Sound Recorder, but I do not hear anything | 412 | | | I have recorded a video, but I do not hear anything | 412 | | | I hear a lot of background 'hiss' | 413 | | | Where do I find the Audio Device Properties of my System? | 413 | | | Audio Setup Guide for WinXP | 413 | | 5 | Background Operation Mode | 427 | | 6 | Binocular mode | 427 | | 7 | Eye Image Recording for Quality Evaluation | 427 | | 8 | Eye Video Recorder | 428 | | 9 | Loading a setup file | 430 | | 10 | LPT Port Address Setup | 431 | | | How to find the LPT port address | 432 | | 11 | Messaging with BeGaze | 436 | | 12 | Mouse mode | 438 | | 13 | RED Tracking Monitor | 438 | | 14 | Timing of Stimulus and Eyetracker Events | 443 | | 15 | Tools | 444 | | | Remote Console | 444 | | | Remote Video | 446 | | | WinCAL | 449 | | | Surveyor | 449 | | 16 | Video Streaming | 449 | | 17 | WLAN connection | 450 | | | | Ad-hoc WLAN Setup Guide for WinXP | 451 | |---------|---|-----------------------------------|-----| | Part XI | S | ystem Interfaces | 462 | | | 1 | PC Boards | 462 | | | | Falcon Board | 462 | | | | Grablink Board | 463 | | | | MPEG/Vidac Board | 464 | | | | EyePC Board | 466 | | | | Digital I/O Board | 466 | | | | Analog Out Board | 470 | | | 2 | I/O Interfaces | 474 | | | | Trigger Signals | 475 | | | | Trigger Signal Shape | 476 | | | | Trigger Signal Representation | 477 | | | | Serial Input | 478 | | | | Serial Output | 479 | | | | Parallel Input | 479 | | | |
Parallel Output | 480 | | | | Input via Digital I/O card | 481 | | | | Output via Digital I/O card | 481 | | | | Ethernet Input | 482 | | | | Ethernet Output | 482 | | | | Analog Out Option | 483 | | | 3 | Remote Commands | 483 | | | | Remote Command Format | _ | | | | Remote Command Reference | | | | | ET_AAD | | | | | ET_ACC | | | | | ET_AOI | | | | | ET_AUX | | | | | ET_BED | | | | | ET_BMP | | | | | ET_BRK | | | | | ET_CAL | | | | | ET_CFG | 490 | | ET_CHG | 490 | |---|-----| | ET_CLR | 491 | | ET_CNT | 491 | | ET_CPA | 492 | | ET_CSP | 493 | | ET_CSZ | 493 | | ET_DEF | 494 | | ET_EFX | 494 | | ET_EQE | 494 | | ET_EVB | 495 | | ET_EVE | 497 | | ET_EST | 497 | | ET_EXE | 497 | | ET_FIN | | | ET_FIX | 497 | | ET_FRM | | | ET_INC | | | ET_INF | 502 | | ET_LEV | 503 | | ET_PNG | 503 | | ET_PNT | | | ET_PSE | | | ET_QRS | | | ET_RCL | 506 | | ET_REC | | | ET_REM | | | ET_RES | | | ET_SAV | 508 | | ET_SFT | | | ET_SIM, ET_EIM, ET_IMG: Eye Video Streaming | | | ET_SPL | 513 | | ET_SRT | | | ET_SSV, ET_ESV, ET_SVF: Scene Video Streaming | | | ET_STI | 517 | | ET_STP | 517 | | ET_STR | 517 | | ET_VCL | 518 | | ET_VLS | 518 | | ET_VLX | 519 | | _ | | - | |----|-----|-----| | Co | nte | nts | XII | | | ET_VRE | | |-----------|-------------------|--|-----| | | | ET_VSY. | | | | | ET_VSV | 521 | | Part XII | Known Limitations | | 523 | | | 1 | Changing screen resolution | 523 | | | 2 | iView X and NetMeeting | 523 | | | 3 | iView X and virus scanner | 523 | | Part XIII | Α | bbreviations | 525 | | Part XIV | D | eclaration of Conformity | 527 | | | 1 | Declaration of Conformity HED 4 | 528 | | | 2 | Declaration of Conformity RED 4 (FireWire) | 529 | | | 3 | Declaration of Conformity Hi-Speed | 530 | | | 4 | Declaration of Conformity MEG | 531 | | | 5 | Declaration of Conformity MT-LR | 532 | | | | | | | | ı | ndex | 533 | # Introduction Chapter # 1 Introduction The iView XTM system is designed for eye tracking studies in a number of fields ranging from psychology/neuroscience to human factors, to usability and marketing. Interfaces are available for remote and head-mounted eye tracking as well as more complex applications like fMRI and EEG. All required components for efficient high-quality eye movement and scene video recordings are combined into a high-performance PC Workstation, which can be a stationary or a mobile computer. Real-time image processing, calibration, auxiliary device I/O, stimulus-software interface, as well as data and video recording are all combined into one easy-to-use MS WindowsTM application. Document version: IVX-2.7-1103 # 1.1 How to read this document This manual is designed to serve both as online help and as printed system documentation of iView XTM. Latest software versions covered in this document: iView XTM - Version 2.7.8 You can use this manual in one of these ways: - Read through the chapters pertaining to particular functions to get background information before using the program. - Consult the manual as a reference document to find out particular information. You can find a topic either by consulting the table of contents (at the front of the manual), or the index (at the end). All the information in this manual can also be accessed through the program. Press **F1** to get help on the menu-item or the element that is currently selected. See also Help 396. It is probably not necessary to read all the chapters consecutively as every chapter tries to be complete in itself. Therefore some phrases may recur. You may jump through the chapters to look for the topics that interest you. Several links inside the text and the index should help you find your way through this book. You can find specific help topics using the help's *Table of Contents*, *Index* or *Find* (full text search in online help). Last updated: 2011-03-29 # 1.2 Important Notice Under specified conditions of use all iView X^{TM} camera devices comply with the EN-60825-1 standard. Detailed calculations and ratings are available for customers on request. The IR sources should be switched off when not in use. This will improve the product life-time. #### WARNING. - Proper use of this equipment depends on careful reading of the manual and all additional instructions and labels. - Before connecting or disconnecting components or additional devices switch off the system. - Switch off the system before cleaning. - The system must not be used in humid environments as it is not protected against moisture. - The system must not be used in presence of explosive or flammable gases. - In case your iView X system or a component of the system is damaged, do not use the system until the system or its component has been repaired by a certified distributor or SensoMotoric Instruments GmbH. - Do not repair the system by yourself. Electrical shock hazard. #### Photosensitive Epilepsy Some people may have epileptic seizures triggered by light flashes or patterns. This may occur while presented successive pictures or video material, even if they have never had a seizure before. Supervise your test persons during experiments. Stop immediately and consult a doctor if a test person has the following or similar symptoms: - Involuntary movements - Disorientation - Convulsions - Loss of awareness - Altered vision #### **Experiment Responsibility** Make sure the presented visual stimuli do not harm or injure your test persons. SensoMotoric Instruments GmbH is in no way responsible for the experiments you develop, execute, and analyze. Do not offend against your test person's cultural background, age, psychological condition, or similar. # 1.3 Explanation of Symbols Symbols may appear on various components of your eyetracking system and have the following meaning: The device is CE compliant and meets the requirements of the current European and national guidelines. Please read the manual before using the device. # 1.4 License Agreement and Warranty IMPORTANT – PLEASE READ CAREFULLY: This license agreement ("Agreement") is an agreement between you (either an individual or a company, "Licensee") and SensoMotoric Instruments GmbH ("SMI"). The "Licensed Materials" provided to Licensee subject to this Agreement include the software programs, which were installed on the equipment Licensee purchased from SMI (the "Designated Equipment") at the time of delivery of the Designated Equipment and/or other software programs SMI has granted Licensee access to (the "Software") as well as any "on-line" or electronic documentation associated with the Software, or any portion thereof (the "Documentation"), as well as any updates or upgrades to the Software and Documentation, if any, or any portion thereof, provided to Licensee at SMI's sole discretion. By installing, downloading, copying or otherwise using the Licensed Materials, you agree to abide by the following provisions. This Agreement is displayed for you to read prior to using the Licensed Materials. If you do not agree with these provisions, do not download, install or use the Licensed Materials. If you have already paid for the Licensed Materials, you may return them for a full refund to: SensoMotoric Instruments, Warthestraße 21, 14513 Teltow, Germany. If the Licensed Materials were installed on Designated Equipment, you may also return such Designated Equipment for a full refund. - 1. License. Subject to the terms of this Agreement, SMI hereby grants and Licensee accepts a non-transferable, non-exclusive, non-assignable license without the right to sublicense to use the Licensed Materials only (i) for Licensee's business operations, (ii) on the Designated Equipment, if any, or on a back-up equipment while the Designated Equipment is inoperable, and (iii) in accordance with the Documentation. Licensee may make one copy of the Software in machine readable form for backup purposes only; every notice on the original will be replicated on the copy. Installation of the Software, if any, is Licensee's sole responsibility. - 2. Rights in Licensed Materials. Title to and ownership in the Licensed Materials and all proprietary rights with respect to the Licensed Materials and all copies and portions thereof, remain exclusively with SMI. The Agreement does not constitute a sale of the Licensed Materials or any portion or copy of it. Title to and ownership in Licensee's application software that makes calls to but does not contain all or any portion of the Software remains with Licensee, but such application software may not be licensed or otherwise transferred to third parties without SMI's prior written consent. - 3. Confidentiality. Licensed Materials are proprietary to SMI and constitute SMI trade secrets. Licensee shall maintain Licensed Materials in confidence and prevent their disclosure using at least the same degree of care it uses for its own trade secrets, but in no event less than a reasonable degree of care. Licensee shall not disclose Licensed Materials or any part thereof to anyone for any purpose, other than to its employees and sub-contractors for the purpose of exercising the rights expressly granted under this Agreement, provided they have in writing agreed to confidentiality obligations at least equivalent to the obligations stated herein. - No Reverse Engineering. License shall not, and shall not allow any third party to, decompile, disassemble or otherwise reverse engineer or by any means whatsoever attempt to reconstruct or discover any source code or underlying ideas, algorithms, file formats or programming or interoperability interfaces of the Software or of any files contained or generated using the Software. The obligations under this Section shall survive any termination of the Agreement. Licensee may apply to SMI at the address above for further information on the interface between the Software and other applications; SMI will on reasonable terms and conditions provide such information as the
Licensee may reasonably require to enable the Software to interoperate with its applications. #### 5. Warranty. - a) If Licensed Materials show a defect during the limitation period specified in Sec. 5 d), which already existed at the time of transfer of risk, SMI will provide Licensee with a corrected version of such defective Licensed Material ("Repeat Performance"). - b) Licensed Materials are defective, if they do not conform to the written agreement between SMI and Licensee, if any, or to SMI's specification. - c) Licensee's claims for defects are excluded: - for insignificant divergences from the agreement or specification; - for damages caused after the transfer of risk by external influences such as fire, water, currency surge, etc.; improper installation, operation, use or maintenance; use in fields of application and environmental conditions other than those expressly specified by SMI; and use in combination with other products not approved by SMI for this purpose, excessive stress or normal wear and tear; - for defects of the Software, which cannot be reproduced; - for Licensee's or a third party's modifications of Licensed Materials and results therefrom; - in as far as Licensee has not notified SMI of apparent defects within 5 business days of delivery and of hidden defects within 5 business days of discovery. - d) The limitation period for warranty claims is 12 months. This does not apply in cases of fraud, intent, gross negligence and personal - injury. Repeat performance does not restart the limitation period. - e) Licensee has to always first provide SMI the opportunity for Repeat Performance within a reasonable period of time. Repeat Performance does not constitute acceptance of a legal obligation. - f) If the Repeat Performance fails even within an additional period of time of reasonable length to be granted by Licensee, Licensee shall, notwithstanding its claims under Section 6, if any, be entitled to rescind the contract or to claim a price reduction. - g) If the analysis of an alleged defect shows that it is not covered by the above warranty, SMI may charge for the failure analysis and correction of the defect, if any, at SMI's then applicable rates. ## 6. Liability Limitations. - a) SMI is only liable for damages caused by slight negligence if such are due to a material breach of duty, which endangers the achievement of the objective of the Agreement, or the failure to comply with duties, the very discharge of which is an essential prerequisite for the proper performance of the Agreement. - b) In cases of Section 6 a), the liability is limited to the damage, which is typical for contracts like this Agreement and which could have been foreseen. - c) SMI's liability is also limited to the damage, which is typical for contracts like this Agreement and which could have been foreseen for damages caused by the gross negligence of an agent or an employee of SMI, who is not an officer or executive of SMI. - d) In cases of Sections 6 a) and c), SMI's liability is limited to a maximum amount of EURO 500.000, respectively EURO 100.000 for financial losses. - e) Licensee's claims for damages caused by slight negligence or caused by the gross negligence of an agent or an employee of SMI, who is not an officer or executive of SMI, which are not based on defects and thus not subject to time-barring in accordance with Sec. 5 d) are time-barred at the latest 2 years from the point in time Licensee became aware of the damage and regardless of Licensee's awareness at the latest 3 years after the damaging event. - f) With the exception of liability under the Product Liability Law, for - defects after having given a guarantee, for fraudulently concealed defects and for personal injury, the above limitations of liability shall apply to all claims, irrespective of their legal basis, in particular to all claims based on breach of contract or tort. - g) The above limitations of liability also apply in case of Licensee's claims for damages against SMI's employees or agents. - SMI Indemnity. SMI will defend or settle any action brought against Licensee to the extent based on a claim that Licensed Materials, used within the scope of the license granted in this Agreement, infringe any copyright valid in the European Union or the European Economic Area and will pay the cost of any final settlement or judgment attributable to such claim, provided (i) Licensee has given prompt notice to SMI of such claim, (ii) Licensee has not recognized an infringement of the third party's copyright, and (iii) the entire defense and the settlement negotiations are reserved for SMI with Licensee's full cooperation and support. If Licensee discontinues the use of Licensed Materials for damage reduction or other important reasons. Licensee is obligated to point out to the third party that the discontinuation of use does not constitute an acknowledgement of a copyright infringement. believes Licensed Materials are likely to be the subject of an infringement claim, it may elect to replace or modify such Software or Documentation to make it non-infringing or terminate the Agreement on written notice to Licensee. SMI shall have no obligation to defend (or any other liability) to the extent any claim involves a Software release other than the current, unaltered release, if such would have avoided infringement, or use of the Software in combination with non-SMI programs or data, unless the infringement would also incur without such combination. The foregoing states the entire obligation and liability of SMI with respect to any infringement by Licensed Materials of any intellectual property rights or other proprietary rights of Licensee or a third party without prejudice to any claims for damages in accordance with Section 6. - 8. Licensee Indemnity. Licensee will defend and indemnify SMI, and hold it harmless from all costs, including attorney's fees, arising from any claim that may be made against SMI by any third party as a result - of Licensee's use of Licensed Materials, excluding claims for which SMI is obligated to defend or indemnify Licensee under Section 7. - 9. Export Restriction. Licensee will not remove or export from Germany or from the country Licensed Materials were originally shipped to by SMI or re-export from anywhere any part of the Licensed Materials or any direct product of the Software except in compliance with all applicable export laws and regulations, including without limitation, those of the U.S. Department of Commerce. - 10. Non-Waiver; Severability; Non-Assignment. The delay or failure of either party to exercise any right provided in this Agreement shall not be deemed a waiver. If any provision of this Agreement is held invalid, all others shall remain in force. Licensee may not, in whole or in part, assign or otherwise transfer this Agreement or any of its rights or obligations hereunder. - 11. Termination. This Agreement may be terminated without any fee reduction (i) by Licensee without cause on 30 days notice; (ii) by SMI, in addition to other remedies, if Licensee fails to cure any breach of its obligations hereunder within 30 days of notice thereof; (iii) on notice by either party if the other party ceases to do business in the normal course, becomes insolvent, or becomes subject to any bankruptcy, insolvency, or equivalent proceedings. Upon termination by either party for any reason, Licensee shall at SMI's instructions immediately destroy or return the Licensed Materials and all copies thereof to SMI and delete the Software and all copies thereof from the Designated Equipment. - 12. Entire Agreement; Written Form Requirement. There are no separate oral agreements; any supplementary agreements or modifications hereto must be made in writing. This also applies to any waiver of this requirement of written form. - 13. Notices. All notices under the Agreement must be in writing and shall be delivered by hand or by overnight courier to the addresses of the parties set forth above. 14. Applicable Law and Jurisdiction. German law applies with the exception of its conflict of laws rules. The application of the United Nations Convention on Contracts for the International Sale of Goods (CISG) is expressly excluded The courts of Berlin, Germany, shall have exclusive jurisdiction for any action brought under or in connection with this Agreement. Teltow, Germany, 2004-2011 SensoMotoric Instruments GmbH See also: Copyright and Trademarks 11 # 1.5 Copyright and Trademarks # Copyright The SOFTWARE is owned by SensoMotoric Instruments GmbH or its suppliers and is protected by the Federal Republic of Germany copyright laws and international treaty provisions. Therefore, you must treat the SOFTWARE like any other copyrighted material (e.g. book or musical recording) except that you may either - a) make one copy of the SOFTWARE solely for backup or archival purposes or - b) transfer the software to a single hard disk provided you keep the original solely for backup or archival purposes. You may not copy the written materials accompanying the SOFTWARE. The user is not entitled to allow a third party to use the software simultaneously without written approval of SensoMotoric Instruments GmbH. Independent branch offices or subsidiary companies are also understood to be a third party in this sense. SensoMotoric Instruments GmbH and/or its supplying firm remain the owners of the delivered software, even if it is altered. #### **Trademarks** BeGaze is a trademark of SensoMotoric Instruments GmbH iView X is a trademark of SensoMotoric Instruments GmbH Experiment Center is a trademark of SensoMotoric Instruments GmbH SensoMotoric Instruments is a trademark of SensoMotoric Instruments GmbH. Microsoft, Windows are registered trademarks of Microsoft Corporation. #### See also: License Agreement and Warranty 5 # 1.6 About SMI SensoMotoric Instruments (SMI) is a world leader in dedicated computer vision applications, developing and
marketing eye & gaze tracking systems and OEM solutions for a wide range of applications. Founded in 1991 as a spin-off from academic research, SMI was the first company to offer a commercial, vision-based 3D eye tracking solution. We now have over 17 years of experience in developing application-specific solutions in close collaboration with our clients. We serve our customers around the globe from our offices in Teltow, near Berlin, Germany and Boston, USA, backed by a network of trusted local partners in many countries. Our products combine a maximum of performance and usability with the highest possible quality, resulting in high-value solutions for our customers. Our major fields of expertise are: - Eye & gaze tracking systems in research and industry - High speed image processing, and - Eye tracking and registration solutions in ophthalmology. More than 4,000 of our systems installed worldwide are testimony to our continuing success in providing innovative products and outstanding services to the market. While SMI has won several awards, the largest reward for us each year is our trusted business relationships with academia and industry. #### Please contact us: ### International Headquarters SensoMotoric Instruments GmbH (SMI) Warthestraße 21 D-14513 Teltow/Berlin GERMANY Phone +49 (3328) 3955 0 Fax +49 (3328) 3955 99 e-mail: info@smi.de ### North American Headquarters SensoMotoric Instruments, Inc. 75 Arlington Street, 5th Floor Boston, MA 02116 USA Phone +1 (857) 241 3865 Fax +1 (857) 241 3601 Toll-Free: 888 SMI USA1 e-mail: info@smiusa.com Please also visit our home page: http://www.smivision.com Copyright © 2002-2011 SensoMotoric Instruments GmbH # **About Eye Tracking** # Chapter # 2 About Eye Tracking This chapter gives a general overview of what eye tracking is about. It will outline some of its basic concepts and most important terms. It covers, what of the eye can be tracked, what kind of eye movements exist, which methods have been or are still in use to measure eye movements, the relevance of head movements and why calibration is important. We recommend reading this chapter to all first-time users of eye trackers. # 2.1 Types of Eye Tracking Eye tracking is the science of measuring the movement of the eyes, usually in response to visual, auditory, cognitive, or vestibular stimulus. Researchers study eye movements both as physiological responses to stimuli and as an indication of cognition. There are quite a few different fields that use eye tracking, ranging from neurological to psychological to advertising. Some researchers who study eye movements are interested in the physiological movements of the eyes in response to a stimulus, but not necessarily where the test person is looking in space. The movement of the eyes as an absolute measure is called orbital eye tracking. The orbital position of the eye refers only to the deflection of the pupil itself. This type of eye tracking is common in vestibular and neurological-visual research. In the iView XTM system, this data type is called "**Pupil Data**". Most researchers who study eye movements are interested in gaze position. The gaze position is the point in the test person's field of view where the eye is actually looking. Gaze data can be reported as a vector in space, or as an actual position in the stimulus. This kind of data is common when a test person's eye position relative to stimulus is studied, such as in reading, usability, cognitive neuroscience, and advertising research. Eye tracking systems that determine gaze position do so by applying complicated mathematical algorithms to the measured orbital pupil position. Therefore, all gaze-tracking systems must be calibrated (see below). The iView XTM gaze data is called "**Point Of Regard (POR)**" and is usually reported in terms of computer screen or scene video pixels. Torsional data is a special kind of eye tracking that tracks the eye in three dimensions, horizontal deflection, vertical deflection, and rotation around a center axis parallel with the line of sight. Torsional eye tracking is most often applied to vestibular or binocular vision research. SMI has a system that measures torsional data, called the *3D VOG Video-Oculography*_®. # 2.2 Common Types of Eye Movements #### **Fixations** Fixations are very low-velocity eye movements that correspond to the test person staring at a particular point. Fixations contain very small randomly drifting eye movements and quick adjustments to keep the target centered. A fixation is detected by applying a maximum-movement threshold amount for a minimum amount of time. #### **Pursuit** Pursuit movements occur when the eyes follow a moving target in the environment in order to fix that target on the retina. Normally the eyes smoothly track a moving object, but in some cases the eyes will perform 'catch-up saccades', rapid eye movements intended to reacquire the target. Pursuit movements are involuntary and are affected by a number of environmental and pathological variables. #### Saccades Saccades are rapid eye movements the eye makes while jumping from point to point in the stimulus. They can be triggered by displaying fixation targets at defined times within the stimulus. Saccades are also studied as movements between points while reading or studying an image. Saccades are usually detected according to velocity and acceleration thresholds. #### Gaze Path Gaze path is path the eye takes while studying a stimulus image. Gaze path can be thought of as the chronological ordering of fixations and saccades, or more generally the pattern the eye takes while studying the image. # 2.3 Eye Tracking Methods # **Electrical Oculography (EOG)** Because there are differences between the polarity of the eye from back to front, original eye tracking systems tracked electrical field changes as the eyes moved. These systems are limited in accuracy and extremely susceptible to noise. #### Coil Systems A coil eye tracking system tracks eye movements by observing a magnetic coil inserted into the eye surgically or as part of a contact lens. The head must be fixed via bite bar or a separate coil must be used for head position analysis. The method is susceptible to noise and the coils can be fragile. This type of eye tracking experiment is invasive and potentially dangerous, therefore it is mostly used for animal studies. # **Dual Purkinje Systems** These systems track multiple reflections of light on the front and back surfaces of the cornea. By geometrically calculating the orientation of these reflections, the eye position can be determined. An algorithm converts this eye position to gaze position. Dual Purkinje Systems are usually very accurate but they require the complete immobilization of the head through the use of an uncomfortable bite-bar. #### **Bright Pupil Systems** Shining IR light directly into the eye, coaxial with an IR sensitive camera, produces a glowing effect in the cornea. By tracking the movement of this bright reflection, bright pupil systems track orbital eye movements. Using a calibrated algorithm, the system can translate these eye movements to gaze position. Bright pupil systems require some external head-tracking method or the head must be immobilized. #### **Dark Pupil Systems** The eye is illuminated by IR light at an angle from an IR sensitive camera. The eye and face reflects this illumination but the pupil will absorb most IR light and appear as a high contrast dark ellipse. Sophisticated image-analysis software determines where the center of the pupil is located and this is mapped to gaze position via an eye-tracking algorithm. Dark pupil systems are versatile and easier to set up though they also require some kind of head movement compensation. # 2.4 Head Movements In order for eye tracking systems to determine gaze position, they must have a method for separating head-movements from eye movements. If a test person fixates on a target and makes a 15-degree head rotation to the left, a system observing only the eye will see a 15-degree eye rotation to the right. This is accurate, since the eyes did in fact deflect in a direction and magnitude opposite to the head in order to maintain the fixation. However, many eye tracking systems render eye movements in terms of a gaze point in the stimulus, such as a target displayed on a computer screen. In order for the system to accurately determine fixation on that target, any detected eye movements must be adjusted to eliminate head movements. The most accurate way to do this is to immobilize the head using a bite bar (even a chin rest will allow enough head movement to alter gaze position results). However, this is invasive, uncomfortable, and could have a profound impact on test person behavior in some kinds of experiments. Alternatively, the head position can be determined and subtracted for eye data via magnetic tracking systems. The iView Head Tracking systems uses a 6D head tracker to determine the direction of the head at all times during the experiment. This is valuable in complex experiments where the test person is surrounded by their environment. A different solution is the use of methods that compensate for head movement without calculating it as a variable. A system that compensates for head movements will automatically remove them from the determination of gaze position. Some of the iView X systems with static, not head mounted cameras use this method by tracking the corneal reflex (CR) in relation to the camera. The CR location in the eye changes with head position relative to the fixed camera and is used along with pupil location to determine the actual gaze point. # 2.5 Calibration The calibration process varies considerably between different types of eye tracking systems. Electrical and coil-based systems must be calibrated in order to define the ratio between voltage changes and pupil movements. Video-based systems can often record relative eye movements without
calibration. However, all systems that determine mapped gaze position must be calibrated in order to relate orbital pupil position to a point in the test person's view. Calibration of a video-based eye tracking system involves instructing the test person to look at specific points while the system observes the pupil position at that point. The system will then develop the necessary algorithm to translate pupil position to gaze position to all points in the area defined by the calibration. # 2.6 Further Reading For a more comprehensive discussion of eye tracking methods, the following books can be recommended: Methods & Designs: Survey of Eye Movement Recording Methods, Laurence Young and David Sheena Behavior Research Methods & Instrumentation 1975 Volume 7(5), 397-429 Eye Tracking Methodology, Theory and Practice Andrew T. Duchowski Springer, London, 2003 # How iView X works # Chapter # 3 How iView X works This chapter gives an overview of how iView X^{TM} works, its general system layout and its various camera systems. # 3.1 Eye Tracking Method The iView X^{TM} system is a dark pupil eye tracking system that uses infrared illumination and computer-based image processing. Images of the eye are analysed in real-time by detecting the pupil, calculating the centre, and eliminating artifacts. Once a calibration is performed, the pupil location is translated into gaze data. #### **Corneal Reflex** In most applications, one or several corneal reflexes are tracked by the iView X^{TM} system in order to compensate for changes in position of the camera relative to the head. In the iView X^{TM} HED system this compensates errors caused by slippage of the eye tracking headband. In all other iView X systems small movements of the head are compensated. A typical eye image with two crosshairs, one for the pupil and one for the corneal reflex. # 3.2 General System Layout The iView X^{TM} system consists of the following components: # Eye Tracking Camera System There are several types of eye tracking interfaces available for use with iView X^{TM} . These range from remote cameras, to head-mounted, to MRI compatible interfaces. Some configurations are better suited for certain experiments than others. In most cases, it is possible to reconfigure an iView X^{TM} system for use with another interface. For an overview see here $\boxed{27}$. ### iView X™ workstation The iView X^{TM} workstation is the eye tracking computer system that runs the iView X^{TM} software and contains the hardware components that allow the system to capture eye movements. The iView X^{TM} workstation controls all camera equipment and processes all eye and scene video signals from the experiment. ### Stimulus Presentation The form of stimulus presentation varies according to the type of experiment and the eye tracking interface used. Some experiments may not use coordinated stimulus at all (driving, locomotion, etc.). Other experiments use a second computer for stimulus presentation via monitor or projector. The optional Stimulus PC is the computer that is used to generate stimulus for the test person. When the stimulus is presented on a computer monitor or projector, this is the computer that the test person watches during the experiment. The Stimulus PC can run SMI Experiment Center^{TM*} to create and run experiments that are synchronized with iView X^{TM} . Or it can run third party stimulus presentation software or programs written by the researcher. Stimulus events presented on the Stimulus PC can be synchronized with data collection on the iView X^{TM} workstation by remote commands or trigger signals from the Stimulus PC LPT or COM port to the iView X^{TM} workstation's IO ports. ### Remote Control There are several options for remote control of the eye tracking computer, which will be covered in more detail in the chapter on MODE INC. Interfaces (474). Synchronization triggers are used to coordinate the presentation of stimulus with eye movements in the data file. Time-stamped messages can be inserted into the data file by the Stimulus PC. The researcher also can incorporate commands into the stimulus program that tell the eye tracker when to begin recording, when to perform drift correction, etc. The iView XTM workstation can output gaze information and object hits and these can trigger stimulus events on the Stimulus PC. Using these optional communication schemes along with any of the common stimulus programs available today, the researcher can design an eye tracking experiment that is completely controlled by software running on the Stimulus PC that allows complete interaction between the test person and the stimulus. ### Simplified system overview: ^{*} SMI Experiment Center[™] might not be part of your system. Contact <u>SMI</u> 12 for more information. ### 3.3 Eye Tracking Camera Systems Two main families of the camera systems are the Headmounted Eyetracking Devices (HED) and the Remote Eyetracking Devices (RED). The systems can be extended with magnetic head-tracking (MHT). Special camera types are used for high precision measurements (hi-speed) and measurements in magnetic fields (MRI). The following iView XTM camera systems are available: | iView X™ Camera
System | Fields of application | Output data | |---------------------------|--|---| | HED 4 80° | driving, industrial,
hand-eye
coordination,
locomotion and gait
studies, human
factors, ergonomics,
consumer behavior,
sports, behavioral
research | scene video with gaze
cursor, gaze position
relative to head
position, pupil size | | HED-MHT 1001 | driving, industrial,
hand-eye
coordination,
locomotion and gait
studies, human
factors, ergonomics,
simulators, virtual
reality | scene video with gaze cursor, gaze position in real world (gaze vector in space and intersection point with defined planes in 3D coordinates), pupil size | | RED 1651 | gaze research on computer monitor, | gaze position on screen, projection | | | television or poster,
psychology, usability,
marketing research | screen or magazine
(gaze position
coordinates in units of
the calibration area),
pupil size | |-----------------------|---|---| | <u>Hi-Speed</u> ार्गी | reading research,
neurology,
physiology, vision /
ophthalmology
research, psycho-
linguistics,
psychology | gaze position on
screen (gaze position
coordinates in units of
the calibration area),
pupil size | | MRI24वी / MEG 27वी | neurology,
psychophysiology,
brain mapping | gaze position on
projection screen or
stimulus goggles
(gaze position
coordinates in units of
the calibration area),
pupil size | The list of applications is not exhaustive but reflects only typical fields. ### 3.4 System Output The iView X^{TM} system has several output options, the use of which will depend on the scope of your experiment. Any of these data formats can be used concurrently. ### Data File The system produces a binary iView **D**ata **F**ile (IDF), which is used as a basis for further analysis. The IDF file can be loaded into the *IDF Converter* and the *Event Generator*, which exports various kinds of data, such as pupil size and position, gaze position, detected saccades and fixations, etc. See iView Data File 285 for more information. The IDF file can be also directly loaded into the SMI Behavioural & Gaze Analysis program BeGaze^{TM*}. ### **Digital Output** Depending on the measured gaze data position, the system outputs digital data through a digital IO card. The digital communication can be used to trigger gaze-contingent changes in the stimulus display or to alert of a loss of fixation. ### **Analog Output** With an optional analog card, eye data can be translated to analog signals for incorporation into other research equipment. ### Video Data iView provides the capability to add gaze cursor directly onto a PAL or NTSC video signal from a scene camera or scan converter. The output video can be captured as a video file on the computer or recorded on a standard VCR. * BeGaze[™] might not be part of your system. Contact <u>SMI</u> 12 for more information. ## **Software Installation** # Chapter ### 4 Software Installation If you obtained a new iView XTM workstation from SMI, the software is already installed and fully operational. You may then skip this section. If, however, you have to install the iView XTM software on another PC you simply have to insert the installation CD into the CD ROM drive and follow the instructions of the installer. If, for one reason, you have to reinstall the software or update to a newer release, follow the instructions under <u>Software Update</u> 36. When the application runs for the first time you have to follow the <u>licensing</u> procedure 31. ### 4.1 Licensing Process iView XTM is only licensed for installation on one computer with a specified set of components. When you first run the application, a reference code will be displayed in the initial dialog box. The reference key consists of six four-number blocks. You must report this reference code to SMI via phone or email 12. SMI will issue a Licence Key, which consists of ten four-number blocks. The Licence key must be entered into the empty space of the initial dialog
box for activating the software. iView XTM is now licensed and will not display the dialog again during the validity period, as long as you do not copy the software, or change hardware settings of your computer. ### See also: Licensing by Email 32 Transfer Licence 33 Add/Remove Components 33 Terminate Licence 34 Time-limited Licence 35 Reusable Licence 36 ### Overview of licensing process: ### 4.1.1 Licensing by Email iView X[™] pops up a licensing dialog containing the reference code: 1234-1234-1234-1234-1234 Mark the line and copy it to clipboard (Alt+C). Paste it (Alt+V) into your email. Send the email to SMI. SMI will send you an email with the licence key: 1234-5678-1234-5678-1234-5678-1234-5678 Copy and paste it in the licensing dialog into the empty space and click OK. The dialog disappears and the iView X^{TM} program is opened. iView X^{TM} is now licensed Back to Licensing Process 31. ### 4.1.2 Transfer Licence If you have to transfer the licence to another computer, first terminate the licence 34 on the old computer. Send the termination code together with the Reference Code of the new computer to SMI. SMI will then issue a new Licence Key. Back to Licensing Process 31. ### 4.1.3 Add/Remove Components Every change of functionality requires a different Licence Key. Click on Help [396] License [398] to view a list of currently licensed components on your computer. If you want to add or remove some of the components, please contact SMI [12] for more information. If you obtain other components, SMI will ask you to terminate the licence [34]. Send the termination code to SMI. SMI will then issue a new Licence Key for the desired components. Back to Licensing Process 31. ### 4.1.4 Terminate Licence In the following cases you need to terminate the licence: - you need to transfer the licence to another computer - you add or remove components to or from iView X To terminate the licence go to the Help Menu: and click on License Information: A dialog box opens with an overview which components are <u>licensed</u> [398]. At the bottom of the overview find the *Terminate License* button: Click on it. The current licence will be terminated. If you exit iView X you need a new Licence Key for activation. iView X has generated a termination code and saved it to the file *TerminationCode.txt* in the iView X installation directory. Send this file to SMI to obtain a new licence. Back to Licensing Process 31. ### 4.1.5 Time-limited Licence If you have been issued a licence with a time-limitation, iView X asks you for a new Licence Key after the time limit has been expired. Contact SMI to issue a new Licence Key. Sending in the Reference Code is not necessary. Back to <u>Licensing Process</u> 31. ### 4.1.6 Reusable Licence If you have been issued with a 'Reusable' Licence Key it is important that you make a note of the number. In the event that the iView X installation folder has been corrupted or deleted, it is possible, after reinstallation of iView X to reuse the same Licence Key again on the same computer, provided the hard disk has not been reformatted or the operating system reinstalled. Back to Licensing Process 31. ### 4.2 Software Update Please follow the update procedure below to ensure correct installation. In case of problems during installation please contact SMI or your local dealer for further assistance. All hardware and software settings will be lost when updating from all previous iView X^{TM} versions. ### Prepare for Installation Do not manually delete any files or folders in the iView X[™] installation folder! Please write down any important settings that you want to restore after the installation. If in doubt relating any hardware or connection settings please contact support@smi.de. iView X[™] from on Ver. 2.4 supports the following interfaces: RED 4 (FireWire), RED, RED250, RED500, HED4, Hi-Speed & Hi-Speed Primate (500Hz, 1250Hz), MRI-LR, MRI-LR Hi-Speed, MRI-SV, MEG and MEG Hi-Speed. Support for older generation interfaces e.g. HED2, RED pt, Hi-Speed ### & Hi-Speed Primate (240/350Hz) is discontinued. ### iView X™ Systems before Version 1.5.49 Uninstall the previous version of iView XTM as is usual under Windows. The usual procedure is to go to Start - Settings - Control Panel - Add/Remove Programs. There you find all software components listed that are installed on your computer. Select "iView XTM" and click on *Remove*. ### iView X™ Hi-Speed Systems (500/1250Hz) - Versions 1.6 - 2.0 Put the installation CD into the CD-ROM drive. Run <drive>\Driver\Euresys\MultiCam_Light_6_3_0_49.exe, where <drive> is the name of your CD-ROM drive (e.g. "E:"). This will install the latest Hi-Speed camera driver. ### iView X™ HED4 Systems - Versions 2.0 - 2.2 To install the latest HED4 driver, please follow the instructions: - 1. Unplug your cameras - a) If you received the current iView X™ CD, run "HED RED Driver (USB)" from your iView X™ CD menu. - b) If you downloaded the latest driver from the SMI ftp site, unzip the file "Installer.zip" and run "start.bat". - 3. When prompted, plug in your cameras. - 4. Verify the camera IDs: UI - 122 x LE - M Cam. ID 1 UI - 122 x LE - C Cam. ID 2 ### For IDFConverter and IDFEventDetector Users To use IDFConverter and IDFEventDetector with iView X[™] data please update your iTools package to the latest version. ### Installing the New Software Put the installation CD into the CD ROM drive. Run "iView X" from the CD menu. After installation you need to reboot the system. **Important:** You may have to change the installation folder C:\Program Files\SMI\iView X (default) to the folder where the old version is actually installed. ### **Restoring the Settings** After updating to the new version you have to tell the system again, of which components your iView XTM system consists. You have to manually restore all hardware and software settings of iView XTM according to your system configuration. Therefore, you can consult the System User Guide Both. Please contact SMI if you are in doubt about the proper settings. ### Licensing Licensing will not be affected through the update process. # **Quick Start Guide** Chapter ### 5 Quick Start Guide This chapter covers how to set up, calibrate and run a typical experiment. Major procedures are described here without going much into detail. This should enable you to run your first experiment. For a more detailed description see System User Guide. Quick guides exist for the following systems: ``` HED 4 40 RED 49 Hi-Speed 52 ``` ### 5.1 HED 4 The following steps will roughly guide you through an experiment with an HED 4 system. For more information consult the chapter on iView X HED 4 80 ### 5.1.1 Experiment Preparation This quick guide describes the necessary steps to execute your first iView $X^{\text{\tiny{IM}}}$ HED experiment. Start the program iView X HED by clicking on the iView X icon the desktop. on ### 5.1.2 Step 1 - Camera Adjustments 1 <u>Scene camera adjustment:</u> Please verify that the wide-angle lens (3.6mm, +/-33°) is used on the scene camera. The wide-angle lens captures the widest visual field viewed by the subject. <u>Hint:</u> Depending on the experimental goals, other lenses may be used. For example, in near field studies where the visual field of the subject is smaller and more focused, like reading or looking at an object in your hand, the 8mm lens may be more appropriate. 2 Eye camera adjustment: Loosen the screw that holds the eye camera and mirror. Turn the unit slightly upwards to avoid touching the test person with the mirror. Then place the cap on the test person's head. Adjust the cap/helmet so it is snug enough to avoid slipping during the experiment. 3 Adjust the mirror while watching the eye control window in iView $X^{\text{\tiny{IM}}}$. The mirror is in the correct position if the test person's eye is centered. Fasten the mirror. The mirror should not touch the subject's face! Hint: Minimize the distance between scene camera and eye camera if possible. 4 You can bring the video images into focus by rotating the focus ring on the scene camera and eye camera, respectively. - 5 The white crosshair marks the center of the pupil and the black crosshair marks the center of the corneal reflex. - 6 To ensure that conditions are adequate for tracking, ask the subject to look up and down, and to the right and left and verify that the crosshairs are following the pupil and the corneal reflex. If the eye tracker is not tracking the pupil or CR properly, consult the chapter <u>Advanced Eye Image</u> <u>Adjustment 402</u>]. ### 5.1.3 Step 2 - Prepare for Calibration - 7 Use a calibration plane with five distinctive targets in front of the subject on a flat panel. Calibration targets must be arranged according to this pattern. Instead of the numbers there should be distinctive targets, like dots or crosses. - The panel can be a wall, whiteboard, paper, monitor, cupboard; any surface with a flat plane. - Targets can be stickers, corners of a window, magnets or anything else that is small and unique enough to allow the subject to focus on it. 8 The test person should sit or stand comfortably and look straight ahead at the calibration panel without moving the head. The calibration panel must be centered in the scene video window as shown in the picture. Hint: For best accuracy the distance between the subject and the calibration plane should be approximately the same distance as objects observed during experimentation. ### 5.1.4 **Step 3 - Execute Calibration** 9 Click on the start calibration button (or F5) to begin calibration. 10 Please advise the subject to look at center target point without moving their head. Left-click with the mouse on the calibration target to align the cross/diamond in the iView XTM scene video with the center (first) point on the calibration panel. The diamond shaped frame that
surrounds the cross indicates a stable fixation. 11 Now press the calibration point accept button (or space bar). After the calibration point has been accepted from iView XTM, the cross will move the second calibration point position in the upper left corner. 12 Please repeat the procedure in the same way with all the remaining calibration points that will appear in turn. When the calibration is complete, the scene video will display a realtime gaze cursor indicating the subject's gaze position. ### 5.1.5 Step 4 - Study/Experiment Execution Upon completion of a successful calibration you are ready to start your study/experiment. ### Record Video - 1 Click on the start recording button to start the live video recording with gaze cursor overlay. - 2 Click on the stop recording button to stop the recording. ### Save Data - 3 Click on the save button to open the save video and data dialog and enter a filename. - 4 Optionally, fill in *Subject Name* and *Description*. Click on *Save* to save the data. ### 5.1.6 Step 5 - Analysis The result after recording is an AVI video file containing the scene video with a real-time gaze cursor overlay indicating the subject's gaze position. You can playback this video with any video player software (e.g. Windows Media player). Please note that the xVid MPEG4 codec has to be installed on your PC. ### 5.2 **RED** The following steps will roughly guide you through an experiment with an RED Monitor Integrated system. For more information consult the chapter on <a href="IVIIII Told No. 100 1 ### 5.2.1 Experiment Preparation Start iView X[™] by clicking on the icon - 2. Check Calibration Settings under Setup-Calibration. The following options are recommended: - enable Accept Points Automatically. - enable Wait for Valid Data. - 3. It is recommended to enable *Average Binocular Data* under Setup-Tracking-Input Filter. - 4. Start SMI Experiment Center™ or a stimulus program capable of running an automatic calibration - 5. Check that the Ethernet Settings are properly set: - in iView X[™] under Setup Hardware Communication - in SMI Experiment Center™ under Extras Global Settings For details about these settings, consult in the manual <u>Network</u> Connection to Stimulus PC 60. 6. In the stimulus program choose *Calibration Background Color* and *Target Color* so that it is similar to the stimulus presentation (what you want to look at during recording). ### 5.2.2 Test Person Placement RED Tracking Monitor - Place a test person in a comfortable position in front of and centered to the Stimulus PC monitor. - 2. If the eyes are tracked by the system, two white eye dots are visible in the RED Tracking Monitor. - 3. If tracking is lost the white dots have disappeared from the RED Tracking Monitor. - Arrows indicate the optimum position of the test person in front of the monitor: - If the test person sits too far away from the screen an arrow indicates that he or she should move closer: If the test person sits too close to the screen an arrow indicates that he or she should increase the distance to the screen: Other arrows direct the test person to center his or her head in front of the monitor. The test person sits correctly if all arrows have vanished. A correct test person to monitor distance should be between 60 and 80 cm. ### 5.2.3 Run Experiment Start an experiment with *SMI Experiment Center* TM . For more information see the *SMI Experiment Center* TM manual. The result of the measurement is stored to an <u>.idf file [285]</u>. The resulting file can be loaded into SMI $BeGaze^{TM}$ analysis software for visualization and further analysis. ### 5.3 Hi-Speed The following steps will roughly guide you through an experiment with a Hi-Speed system. For more information consult the chapter on <u>iView X Hi-Speed</u> [197]. ### 5.3.1 Experiment Preparation The following steps describe how to run a simple monocular iView X^{TM} Hi-Speed experiment. It is assumed that - the iView XTM workstation and the Stimulus PC are properly connected, powered and running. The *Eyetracking Column* has to be switched on prior to starting iView XTM software. - the stimulus PC is properly connected to the iView X[™] workstation and is running SMI Experiment Center[™] or a stimulus program capable of running an automatic calibration - calibration settings are set properly in the iView X[™] application ### 5.3.2 Eye Camera Setup Click in the Eye Control window to activate the eye tracker. The User message in the System Log should read "Grab started". Then follow the steps: - Place the test person in front of the tracking column. Make sure that test person is comfortably seated and that the mirror does not touch any parts of the face or the eyes. The forehead should rest on the head rest. - 2. Vertically move the chin rest until the eyes and the markers at both sides of the column are on the same height. - 3. Move camera horizontally until the eye is horizontally centered in the eye image control. - 4. Adjust the vertical position of camera (camera tilt), until the eye is vertically centered in the eye image control. - Adjust the tilt of the mirror to remove possible reflections from the eye image, after which the vertical position/tilt of the camera probably needs to be readjusted. - 6. Adjust the focus until the corneal reflection is as small as possible. This assures optimal focus on the eyeball. - Let the test person look at a center target of the stimulus display. Click on the Auto Adjust button to automatically adjust the image regarding pupil threshold and image balancing. 8. The white cross-hair should be centered on the pupil and the black cross-hair on the corneal reflex (CR). If not, you can adjust them by moving the sliders. Ask the test person to look at the four corners of the screen. Setup is complete if both crosshairs follow the pupil and cornea reflex during these eye movements. If the image seems to be blurred, is too dark or to bright, click on the <u>lmage Adjust</u> button to adjust brightness and contrast, where you can also click on *Auto Balance* to let the eye tracker self-adjust its brightness and contrast. If the eye tracker is not tracking the pupil or CR properly, consult the chapter Advanced Eye Image Adjustment. 402 ### 5.3.3 Run Experiment Start an experiment with *SMI Experiment Center* TM . For more information see the *SMI Experiment Center* TM manual. The result of the measurement is an <u>.idf file [285]</u> recorded and stored on the iView X PC. The resulting file can be loaded into SMI $BeGaze^{TM}$ analysis software for visualization and further analysis. # **Basic Functions** ### 6 Basic Functions A typical eye tracking experiment consists of the following steps: ### System Setup The first step includes setup and wiring of all the iView XTM components. The setup depends on the used <u>Eye Tracking Camera System</u> 27 and will be outlined separately for each camera system in the <u>System User Guide</u>. 80 ### Prepare Stimulus and synchronize with iView X The next step is to choose if and what kind of stimulus is presented to the test person. For preparing the stimulus you can use a <u>supported stimulus</u> <u>software 75</u>, use a third-party stimulus software or develop your own application. If you use a supported stimulus software, you have to establish a <u>Network Connection to iView X 60</u> to synchronize the stimulus presentation with the measurement system. You can also use one of the various 10 Interfaces 474 for synchronizing. The next step is to place the test person and get a large focused eye image of the test person's eye. How to setup the eye camera will be outlined separately for each camera system in the System User Guide. ### **Run Experiment** After the system setup and test person's placement you are ready to run an experiment. A typical experiment includes - 1. Calibration - Stimulus Presentation - 3. Data Recording - 4. Analysis Before you run your first experiment, read more about <u>Calibration</u>. 65 A good calibration is crucial for the accuracy and the reliability of the results. With the supported stimulus software all the above steps run automatically, see <u>Automated Data Recording</u>. [75] It is always possible to use Manual Data Recording. [77] ### Analysis of the Results The recorded data can be further analyzed, see Analysis. 781 ### **Remote Recording** Calibration, Data Recording and many more functions can be controlled by the Remote Command Language. [483] # 6.1 Start Program Start iView X[™] by one of the methods: - double-click on the iView X[™] icon. - navigate to Start All Programs SMI iView X and click on iView X. # 6.2 Network Connection to iView X If you wish a stimulus program to interact with the iView X program, the stimulus PC and the iView X PC must be properly connected. If the iView X program and the stimulus software run on the same PC, both programs should be connected using the <u>Local Host [62]</u> address. The following describes how to establish a network connection. For best performance it is highly recommended to connect the two PCs directly through a CAT 5 crossover cable. On the **iView X workstation** select from the <u>Setup</u> (316) menu <u>Hardware</u> (317) Communication (318). Set Remote to Ethernet. Check Accept Remote Commands. Click on the *Configure* button next to Ethernet. A *Network Configuration* dialog appears: Network Configuration of the iView X work station Listening: Select IP address of the iView X computer and its port [529]. Click on the drop down button to see a list of choices. If your computer has been already assigned an own address, it will be listed here together with the local host address (127.0.0.1). If in doubt ask your network administrator. **Send UDP packets to:** Select IP address of remote computer and its port [329]. Enter under *Send* address of the stimulus PC the value of the *Listen* address
of the iView X workstation and under *Send* address of the iView X workstation the *Listen* address of the Stimulus PC. Also the respective ports should match: ### **Local Host** If the iView X program and the stimulus software run on the same PC, both programs have to be connected through the local host address 127.0.0.1 but different ports, e.g. iView X uses port 4444 and the stimulus software 5555. ## SMI Experiment Center If you use Experiment Center on the stimulus PC, proceed with <u>Using SMI</u> Experiment Center [63]. ### **Presentation Interface** If you use Presentation on the stimulus PC, proceed with <u>Using</u> Presentation Interface 63. # 6.2.1 Using SMI Experiment Center On the **Stimulus PC** SMI Experiment Center must be installed. In the SMI Experiment Center program open the *Global Settings* dialog or click on the *network connection* button. At the top of the dialog find the *Connection Settings:* Network Configuration of Experiment Center on the Stimulus PC The IP address of the Stimulus PC is already given in the *Experiment Center (IP Address)* field. Choose a <u>port 329</u>. Default is 5555. In the *iView X System (IP Address)* field enter the *Listen* address of the iView X workstation. In the *Send* address field of the iView X workstation enter the *Experiment Center (IP Address)*. The respective ports should match. Default is 4444. Close the Global Settings dialog by clicking on OK. SMI Experiment Center should show a *connected* status. Back to Network Connection to Stimulus PC 601. # 6.2.2 Using Presentation Interface On the **Stimulus PC** the following components must be installed: - Presentation stimulus software, available at <u>www.neurobs.com</u>. - iView X Presentation Interface Configuration tool, which is part of the ### SMI iTools package. Click on Start of the taskbar, go to All Programs - SMI - iTools and select Presentation Interface - Network Configuration. A dialog box opens. Click on Setup Network Configuration. A Network Settings dialog appears: Network Configuration of the Stimulus PC In the *Listen* field select IP address of the stimulus PC and its port [329]. Click on the drop down button to see a list of choices. One entry is 127.0.0.1, which is the local host address. The other entry should be the IP-address of the stimulus PC, which you should select. In the *Send-UDP-Packets-to* field enter the *Listen* address of the iView X workstation. In the *Send* address field of the iView X workstation enter the *Listen address* of the Stimulus PC. Also the respective ports should match. If the iView X Presentation Network Configurator succeeds in connecting to the iView X workstation, the LED next to the Send address will turn to green. Click on OK to close the Network Settings dialog. If the eyetracker is started on the iView X workstation (camera gets images and is running) a message appears: "Eyetracker online." This indicates that a successful connection has been established. Back to Network Connection to Stimulus PC 601. # 6.3 Calibration Calibration is called the process, in which the iView X system establishes a relationship between the position of the eye in the camera view and a gaze point in space, the so-called point of regard (POR). The calibration also establishes a plane in space where eye movements are rendered. Since this relationship strongly depends on the overall system setup and also varies between test persons, a reference measurement called calibration must be performed before each experimental run. ### General Calibration Process During calibration, the test person is presented with a number of targets in known locations. These targets must be fixated on by the test person and the position of the eye is noted by the system. Using these reference points, the system creates a mapping function that relates all eye positions to points in the <u>calibration area</u> 66. The accuracy of gaze data is directly related to the success of the calibration. After a successful calibration process the system is ready for measurement. ### **Calibration Area** The Calibration Area is the area on which the eyetracker is calibrated. Area matching a monitor screen should have a typical size of 800x600, 1024x768, 1280x1024 etc. in pixels. See the display settings in the system's control panel for more details. The area could be any other area in arbitrary units. Gaze position will be most correctly determined in the area covered by the calibration points. Gaze position outside of the calibration area will be approximated but it is not nearly as accurate. However, in some situations it is beneficial to shrink the size of the calibration field to match the useful area of the stimulus. For HED applications using a wide-angle scene camera, it is not practical to use calibration points that are at extreme eye angles, especially if the test person is not likely to look at such an angle during the test without moving his or her head. The same is true of MRI studies where the stimulus is concentrated near the center of the screen. In these cases, the calibration points can be repositioned to a more central location. ### **Light Changes and Colours** Light level and colour changes in the stimulus have a profound effect on the pupil size. If the pupil size remarkably changes between calibration and the experiment, it will introduce error to gaze position measurements and the resulting gaze position data may not be reliable. Some tips regarding the light conditions: - If an experiment is taking place outside, the test person should be calibrated outside. - If the experiment consists mainly of reading black text on a white background, the calibration process should be also showing black targets on a white background. - Light levels should be approximately the same between calibration and the experiment. Strong light level changes should be avoided between calibration and data recording. Special care should be taken to match calibration colours with those displayed during the experiment. The fore- and background colours of the calibration targets should be chosen similar to the colours of the experiment. ### Distance Calibration points should be presented on a plane at an equal depth to whatever the test person will be viewing during the test. There will be a certain amount of parallax error if the calibration plane is close to the test person (within a meter) but gaze position is recorded far away, and vice versa. Care should be taken to select a calibration plane in a place logical to the experiment goals. ### **Head Movements** In all calibration methods, the test person should be encouraged not to make head movements. ### Dynamic or static display of points The process of calibrating the test person depends on the interface used and the data type desired. For remote-type experiments that use a defined area such as a computer monitor for calibration, points can be displayed dynamically (e.g. by using the program SMI Experiment Center) or statically (using a bitmap, points drawn on a wall, etc..). Head mounted experiments are calibrated in a similar fashion with points identified that correspond to locations in the scene video, typically by using a laser pointer. #### Different calibration methods The method of calibration will slightly vary between different interfaces and different test persons. In most eye tracking experiments, gaze accuracy is important and so the calibration options are set to minimize the chance of error. However, in some cases, a shorter calibration is required. This is particularly true with test persons who are unable to calibrate well such as those with vision or ocular motor problems. A shorter calibration with less points would be the most comfortable for these test persons, with whom accuracy is generally compromised anyway. In general it can be said that more calibration points result in a higher accuracy, at the same time increasing the preparation time prior to the actual measurement. ## Accepting points manually or automatically During manual calibration the operator examines the test persons's eye image and confirms the fixation of each calibration point by pressing a key. When calibrating in automatic mode the system checks the test person's eye movement, accepts the calibration point automatically and proceeds to the next point. #### Manual and automated calibration The whole calibration process can be started and performed manually, see Manual Calibration 71. If supported stimulus software is used, calibration will be started automatically after you have started an experiment, see <u>Automated Data Recording</u> 75. ## 6.3.1 Calibrating with SMI Experiment Center The SMI Experiment Center™ application is a Windows™ program that runs on the stimulus PC. It requires an ethernet connection between the two computers. The application, once activated and enabled, will present calibration points to the test person as they appear. This is usually the easiest way to calibrate, especially for RED, Hi-Speed and MRI systems. See the SMI Experiment Center™ manual for more details. # 6.3.2 Calibrating with WinCAL The WinCAL [449] application is a Windows™ program that runs on the stimulus PC. It requires a serial link or ethernet connection between the stimulus PC and the iView X workstation. The application, once activated and enabled, will present calibration points to the test person as they appear. During the calibration process WinCAL can either: - use iView points: If you move 74 the calibration points in iView, WinCAL immediately adopts the new positions. This will be used in most cases. - use default calibration points: WinCAL ignores position changes in iView and displays the points at default locations. This must be selected if WinCAL is used with the HED. If WinCAL is left active during the test, it will maximize its window to display drift correction or calibration points whenever told to by the iView system. It will minimize after
a successful completion, returning the Stimulus PC to the stimulus software. See the WinCAL manual for more details. ## 6.3.3 Computer Screen With Static Calibration Points It may be necessary to calibrate using static calibration points on the computer screen. This is the case when the Stimulus PC does not run MS Windows or when a serial link or ethernet is unavailable. One method of calibrating in this case is to display a static bitmap of calibration points to the test person. The operator, who watches the procedure on the iView X workstation, tells the test person which calibration point is active. The typical geometry used for calibration is this: one point is in the exact center, the other eight points are each located at 5% of the total image size from the closest border. For example, if a calibration bitmap is displayed at a resolution of 800X600, the upper left point would be located at 40X30, the center point at 400X300, and the lower right point at 760X570. If you use a different geometry for calibration points, the iView calibration must be adjusted to take into account the new target locations. The easiest way to do this is to load the calibration bitmap into iView as a scene image. Go to the File on menu and choose Open Scene Image of the appropriate calibration image. Now move the calibration points 74 to match those displayed in the bitmap. # 6.3.4 Using Remote Commands It is possible to create an automated calibration routine using the Remote Control Command Language. Your stimulus presentation software must be able to send and receive information on the serial port or using ethernet. For more information see also the section on I/O Interfaces 474). #### 6.3.5 Manual Calibration To start a manual calibration click on the start calibration button 1. of the <u>Toolbar</u>চিন্তী (hotkey: <u><F5>)</u>ডিন্তী. 2. Instruct the test person to look at the calibration point. The target in the iView X application window will indicate a stable fixation according to the following: Stable Fixation 3. During the calibration process the test person should look at the calibration targets without moving his or her head. When the test person has fixated, press <F6> or <space> or the accept point button to accept the point. - If calibration is set to Auto Accept Points, the system will 4. automatically advance through the calibration points. If Auto Accept Points is disabled, guide the test person to look at the respective calibration target. Verify that the test person complies with the calibration and does not look away from points too early. - 5. During the calibration process the test person should look at the calibration target without moving his or her head. When the test person has fixated, press <F6> or <space> or the accept point button 👑 - 6. If the calibration was completed successfully, the User message in the System Log will display "Calibration finished successfully" and the scene image will show a cursor indicating the test person's gaze position. - Check the Error 394 tab in the System Log 391 window for potential 7. - problems during the calibration. If the calibration is successful, the Online Data [370] window will begin showing live gaze data. - 8. To verify the accuracy of the calibration, ask the test person to look at defined points within the stimulus while monitoring the gaze cursor on the scene view, or run the Validation routine. ### 6.3.6 Drift Correction Drift correction is a one-point correction that realigns the calibration field to adjust for any linear drift that may have entered the system. To start a drift correction choose from the <u>Calibration [314]</u> menu <u>Drift Correction [315]</u>. A single fixation point, usually the center point, is displayed to the test person and accepted when the operator hits F6 or clicks on the *accept* Fixation points can be triggered manually by the operator, or automatically via remote control (see section Remote Commands [483] for more details). Typically, drift correction is done between trials during a test. As with calibration, the fixation target in drift correction should be a similar color and background color as the actual test. This will avoid large changes in pupil size. The linear adjustment performed by a drift correction requires a steady fixation by the test person. If your test person is incapable of fixating well (because of macular degeneration or spontaneous nystagmus, for example) the routine will not likely be useful. Drift correction will not be effective against non-linear disturbances. In these cases, it is better to recalibrate. See also: ET_RCL 506 ### 6.3.7 Validation A validation is a process to check the accuracy of the eye tracking system. It is available only after a successful calibration. If validation is started, fixation targets are presented at known locations, as in a calibration process. The test person has to fixate the targets, and the system compares the measured gaze points with the position of the targets and calculates the deviation. ## **Setup Validation** Before starting the validation process, check under <u>Setup</u> [347] Calibration in the <u>Geometry</u> [347] tab that the values for *Stimulus Physical Dimension* and *Monitor-Head Distance* are set correctly. ### The Validation Process Start Validation by pressing <F8> or click on the start validation button. The test person should look at the first target. Press <space> to accept the first point. If Auto Accept 315 is checked, the system automatically proceeds to the following targets. ## The Output iView X draws a small red cross at the measured gaze point. The system calculates the deviation to the known calibration target and writes three values for each calibration target in the User 392 tab of the System Log: 391 the x-component, the y-component and the vector resultant of the deviation. Finally, the system calculates the average value for the three resulting columns. Thus, the very last value gives you an idea of the system's average measurement accuracy. Pressing <space> clears the bitmap view/scene video. All units are given in pixel or, for HT systems, in mm. See also: ET VLS 518. ## 6.3.8 Moving Calibration Points It is possible to manually change the calibration points either by moving them during calibration, or prior to the calibration process. ## Moving the calibration points during calibration - Start a calibration. - 2. Let the test person gaze at the desired calibration point. - 3. Move the calibration point with the mouse by drag and drop until it matches the test person's gaze. - 4. Continue with the calibration process. ## Moving the calibration prior to a calibration - 1. Choose from the Calibration 114 menu Edit Points 116 to make all calibration points visible in the scene view. - 2. Step through the calibration points by hitting the <space> bar until the point you wish to change is highlighted. - 3. Move the calibration point with the mouse by drag and drop to the desired position. - 4. Hit the <space> bar to proceed to the next point. - 5. With another click Edit Points 316 the calibration points will hide again. ## Reset calibration points to their default positions - 1. Go to the Setup 316 Calibration 342 dialog box. - 2. Click on the Reset Points button. By default the distance between the outer calibration points and the border of the <u>calibration areal</u> 66 is five per cent of the respective horizontal or vertical dimension. The inner points are equally distributed. # 6.4 Data Recording There are two ways to start and stop data recording: - Automated Data Recording (75) With Automated Data Recording data recording and saving is controlled by a supported stimulus software. - Manual Data Recording [77] Start, stop recording and saving the data can be controlled manually on the iView X workstation ## 6.4.1 Automated Data Recording ### Supported Stimulus Software iView X currently supports the following Stimulus Presentation Software: - SMI Experiment Center™ - Presentation stimulus software, available at www.neurobs.com ## Using SMI Experiment Center™ Start an experiment with *SMI Experiment Center* TM . For more information see the *SMI Experiment Center* TM manual. # Using Presentation It is a good idea to use one of the example experiments from the *iView X Presentation Interface* as a starting point for your own experiment. On the *Stimulus PC* go to the folder, where the *Presentation Interface* is installed. Go to the subfolder *Experiments*. There you find various experiment examples. Go to a subfolder and double-click on the .exp file. Presentation opens. Go to the Settings tab, click on Video. Under Display Device Adapter select your monitor. Go to the *Main* tab and click on *Run* to start the experiment. The example experiments demonstrate remotely controlled calibration and recording, while presenting a stimulus. ### **Automated Calibration and Recording** The above stimulus programs are capable of automated calibration, which means that calibration will start automatically when you run your experiment. Make sure to carefully select the type, size, and colour of the calibration targets. Background and cursor colours should be similar to the stimulus back- and foreground colours. If calibration starts, proceed as follows: - 1. A calibration point will be displayed for the test person. - 2. During the calibration process the test person should look at the presented targets without moving its head. When the test person has fixated, press <space> to accept the point. - If calibration is set to Auto Accept Points, the system will automatically advance through the calibration points. The test person should view each one as it is presented. Verify that the test person complies with the calibration and does not look away from points too early. - 4. If the calibration was completed successfully, the *User* message in the *System Log* will display "Calibration finished successfully" and the scene image will
show a cursor indicating the test person's gaze position. - 5. Check the Error [394] tab in the System Log [391] window for potential problems during the calibration. If the calibration is successful, the Online Data [370] window will begin showing live gaze data. The above stimulus programs automatically start and stop a recording during the stimulus presentation and save the recorded data. # 6.4.2 Manual Data Recording If you choose to manually calibrate and start recording proceed as follows: - 1. If the test person has not been calibrated, yet, perform a manual calibration 71. - Click on the start recording button to start recording. - 3. Begin your stimulus presentation. - 4. Click on the *stop recording* button to stop recording. - 5. Click on the save button to open the save data dialog. - 6 Enter a file name - 7. Optionally, fill in Subject Name and Description. - 8. Click on Save to save the data as a file of type .IDF. # Remote Recording Start, stop recording, save and many more functions can also be controlled by the Remote Command Language [483]. # 6.5 Analysis The result of the measurement is stored to a binary <u>.idf file [285]</u>, whose store location depends on the type of data recording used: - using SMI Experiment Center™: in the *Results* folder of SMI Experiment Center™ on the stimulus PC. - using manual data recording: on the iView X workstation. The resulting file can be loaded into SMI $BeGaze^{TM}*$ analysis software for visualization and further analysis. To export the IDF data into an ASCII text format, load the IDF file into the *IDF Converter* program and choose options for export. (The *IDF Converter* is part of the *iTools* package on the iView X CD.) The resulting text file can be loaded and analyzed with MatlabTM, ExcelTM or other spreadsheet programs. Note: keep the IDF files as a data archive * SMI Experiment Center[™] and BeGaze[™] might not be part of your system. Contact SMI 12 for more information. # **System User Guide** # 7 System User Guide This chapter describes all available iView X[™] eye tracking interfaces and their uses. # 7.1 iView X HED 4 The iView X[™] HED 4 system is a headband, cap or helmet, on which a camera assembly is mounted. Typical applications include driving, industrial, hand-eye coordination, locomotion and gait studies, human factors, ergonomics, consumer behavior, sports and behavioral research. Gaze data is usually recorded in terms of the scene camera pixel resolution. The HED also outputs the head-mounted scene video with gaze position indicated by a gaze cursor. The cornea reflex is tracked to provide slip compensation, which compensates for movement of the camera assembly on the head. The test person can freely move during the experiment and the gaze point is detected in a 3-D-space. This feature makes iView HED suitable for most applications. The output is a video with a gaze cursor displayed on it. Numerical data is given in coordinates of the scene video. ### 7.1.1 Features and Benefits The iView X HED 4 system is a fully mobile, lightweight head-mounted eye tracking system for tracking gaze position in real life environments. It excels in minimal setup and accurate recording, is easy to use and extremely versatile. ## Technology - · Non-invasive, video-based eye tracking - Monocular, pupil-CR, dark-pupil tracking ### Performance | Sampling rate | 50 Hz (default)
200 Hz (optional) | | |---|--------------------------------------|--| | Tracking resolution | < 0.01° (typ.) | | | Gaze position accuracy | 0.5° - 1° (typ.) | | Viewing angle | for focal length: | horizontal | vertical | | |-------------------|------------|----------|--| | 8.0 mm | ± 15° | ± 10° | | | 6.0 mm | ± 20° | | |--------|-------|-------| | 3.6 mm | + 31° | + 22° | ## System Operating system Windows XP Workstation Tablet PC or laptop Mobility Package Extra batteries, external charger, 12V car adaptor ### Headset · Lightweight, comfortable, quick & easy to adjust Bike helmet, baseball cap, headphones, flight helmet, and headband mount available • Interface weight 79g Cable length 5m and 2m (set of cables) # **Auxiliary Devices / Communication** - Digital scene video recording in broadcast quality (MPEG-4) - Audio channel recording - Open platform communication interface (UDP) - Compatible with SMI BeGaze[™] Analysis Software. - Compatible with 3rd-party video analysis packages (e.g. The Observer[™] from Noldus) ## System Options • High-speed eye tracking option (200Hz) 6D head tracking option for numerical recording of gaze position in complex environments (e.g. simulators, CAVE) ## **Approvals** • CE, EMC, Eye Safety # 7.1.2 Hardware Components In the HED 4 system the video signals are not analogue but digitized and send to the iView X[™] workstation via USB port. See <u>HED 4 Camera</u> 84 for details. ## 7.1.2.1 HED 4 Camera The HED is a camera assembly, which depending on the specific application can be mounted on a cap, helmet or headband. It consists of an eye camera, a mirror which directs the eye image to the eye camera and a scene camera, which is directed towards the scene in front of the test person. The scene camera is provided with three different lenses 85. ### Connection Both cameras are connected to two USB ports of the iView XTM workstation. After having connected the plugs, the iView XTM software must be told the current configuration in the Setup Hardware [317] dialog. ## 7.1.2.2 HED 4 Scene Camera Lenses The HED 4 is provided with three scene camera lenses, which fit for various experimental setups: | focal length | aperture angle | |--------------|----------------| | 3.6 mm | ± 33° | | 6 mm | ± 22° | | 8 mm | ± 15° | The aperture angles reach from \pm 33° for experiments that need a wide angle survey to \pm 15° for limited surveys on panels or similar. For best accuracy it is recommended to use the lens that fits best to your experiment. ## 7.1.3 User Guide The following guide describes the steps how to set up, calibrate and run an iView X[™] HED 4 experiment, after the system has been wired 33 properly. ## 7.1.3.1 Initialization of Software Turn on the iView X[™] workstation. Start iView XTM by double-clicking on the iView XTM icon. Next, iView X^{TM} must be initialized to run with this configuration. Therefore, the iView X^{TM} program must be told, which hardware components we use. Usually, it will be done only once on installation, but just in case, the software must be reinitialized, check the following: From the Setup [316] menu go to Hardware [317]. - Set Eye Tracker Device to HED 4. - Click on Advanced 3261. - Under Eye choose, if left or right eye should be tracked and recorded. - Click on OK to close the Advanced dialog. - Click on OK to close the Setup Hardware dialog. Activate eye camera by clicking on the Eve Control 373. ### Arrange docking windows. - Go to the View 367 menu and set a check mark to the following windows: Align all windows around the Scene Image Window as suggested below: A typical iView X[™] window arrangement (HED systems) From the menu go to Setup 316 - Calibration 342. - Set Calibration Method to 5 Point Linear, see also Calibration. 92 Calibration Settings for HED systems (upper part) - Uncheck Accept Points Automatically, because we will do a manual calibration. - Check Audio Feedback on next point. - Uncheck Randomize Point Order. As we do a manual calibration we have to know the calibration point order. - Check Wait for Valid Data. - Set Check Level to Medium. Calibration Settings for HED systems (lower part) Click on OK to close the window. From the Setup 316 menu go to Output 354. - Go to the Gaze Cursor Properties 357 tab. - If needed, enlarge the sizes of all cursors (left, right and calibration cursor) so that the targets can be comfortably look at. Adjust color to the scene. The cursors will be overlayed on the scene video during recording, so choose a color that can be easily distinguished from the scene. - Go to the Gaze Cursor Filter 356 tab. - Set Method to Manual. - Set Filter Depth to 100 ms and Saccade Length to 20 pixel. - Click on OK to close the window. ## 7.1.3.2 Adjust Camera and Eye Video Loosen the screw that holds the IR mirror and turn the mirror slightly upwards, so it will not touch the test person, then put the cap on the test person's head. Adjust the cap so it is snug enough to avoid slipping during the experiment. Turn the mirror downwards and adjust it while watching the Eye Control: The mirror is in the correct position if the test person's eye is centered. Fasten the mirror. The mirror should not touch the test person's face. Rotate the focus ring on the eye camera to focus the eye image. Use the cornea reflex as indicator: The eye image is sharpest if the cornea reflex is smallest. Check the *Dynamic* check box, so the eyetracker tries to adjust the pupil threshold automatically. If necessary, click on <u>Image Adjust [378]</u> to change the brightness of the eye video. Ask the test person to look up and down, and to the right and left. The setup is complete if both crosshairs follow the pupil and the corneal reflex during likely eye movements and positions. If the eye tracker has difficulties to track the pupil or CR, see more in chapter Advanced Eye Image Adjustment 402. # 7.1.3.3 Adjust Scene Video Adjust the scene video camera so that it covers the field of view of the test person. ## Minimize parallax error To reduce parallax error, place the scene camera as close as possible to the eye camera. ### Camera adjustment You can loose the screw that holds the scene camera. The camera can then be tilted and moved. Control the field of view by watching the scene video. If the field of view is appropriate and the distance to the eye camera is minimized, fasten the camera. If you right-click on the scene video, a context menu [91] pops up. ### 7.1.3.3.1 Context Menu: HED scene video If you right-click
on the <u>HED</u> 80 scene video, the following context menu pops up: ### **Reset to Original Size** Sets the scene video window to its original size, if it has been resized previously. ### Adjust Scene Cursor ls enabled only for <u>HED-MHT[100]</u> systems. Starts a <u>Scene HT calibration</u> [352]. ## Copy Scene Copies contents of scene video window to clipboard. ### Use Hardware Gamma Hardware Gamma can be used to increase the picture quality under extreme light conditions (very dark or very bright light conditions). You can also switch ON/OFF this feature in realtime by using the shortcut Ctrl+H. ## Gaze-following gain control Enable this option if you measure under extreme light changing conditions, like car driving in bright sunlight, where inside and outside need to be observed. See also HED settings 326. ### 7.1.3.4 Calibration In HED systems the eye is calibrated to the scene video, not necessarily to a fixed area in the test person's view. ### **Calibration Methods** It is possible to select between a 2-point, 5-point or 9-point calibration. A 5-point calibration is best suited for applications where the eye camera is located without big offsets of the middle of the line of sight. Naturally this is the case for the HED, therefore this method is quick and accurate enough. ### How to calibrate There are different ways to calibrate the HED. One way is to mark points on the wall or some other flat surface. The operator can drag calibration points to match these points as they appear in the scene video. The size of the calibration field should approximate the likely eye movements of the test person at any single head position. Points that are especially peripheral will probably involve head movement during the test. Another way to calibrate the HED system is to use a laser pointer. The test person stands facing a wall or flat surface. The operator watches the scene video on the screen. Once calibration is started, the operator uses the laser pointer to display to the test person where the calibration point falls in their field of view. This is accomplished by lining the laser point up with the calibration point while looking at the scene video. The operator hits F6 to accept the calibration point and then moves on to the next, until all points are completed. It is easiest to do this with ACCEPT POINTS AUTOMATICALLY turned off. Because of potential parallax errors, the HED should be calibrated at a distance that approximates whatever the test person will view during the test. If the calibration plane is very close to the test person, there will be a parallax error in the gaze data when the test person looks at points far away, and vice versa. If the experiment involves eye tracking at a number of different distances, a medium-distance calibration area should be selected. To calibrate follow the steps: - 1. Select a suitable calibration distance. 93 - 2. Choose between calibrating - with calibration panel 95 - without calibration panel 96, instead using a laser pointer. ### 7.1.3.4.1 Select Calibration Distance For a calibration the test person has to fixate points at known positions on a calibration plane. For best accuracy the distance of the calibration plane should be exactly the distance of the observed objects. The bigger the deviation between the calibration plane distance and the distance of the observed objects, the bigger is the parallax error. In an actual measurement, however, the distance of the observed objects vary. Depending on whether objects of interest are close (0.5m = x = 1m) or far away (x > 1 m) from the subject, chose the calibration plane distance according to the following table: ## Fixed Distances to the Objects of Interest, Distance Known A-priori | Objects
of
Interest | Objec
t
Distan
ce x | Sample Applications | Optimal Distance between Test Person and Calibration Plane | |------------------------------|--|--|--| | Fixed distance of the object | x
consta
nt and
known
a priori | reading a newspaper observing the panels in a driver/
pilot cockpit | Calibrate at the distance x of the object(s) of interest. | # Variable Distance to the Objects of Interest | Objects
of
Interest | Object
Distan
ce x | Sample Applications | Optimal Distance between Test Person and Calibration Plane | |-----------------------------|--------------------------|--|--| | close
objects | 50cm
to 1m | observing monitor/ keyboard/ mouse while working in an office handling of terminals (like cashpoints) Note: In tracking distances shorter than 1m the parallax error is highly sensitive to changes in the object distance. | 65 cm | | far away
objects | greater
than 1
m | observing the street scene outside of the driver's cockpit going through a supermarket | 1,6m | | any
distance | 50cm
to
"infinity | Going through a supermarket and choosing products from a shelf | 1,2m | | very far
away
objects | 3m to
"infinity | Car driving (when you're not interested in gaze inside of the car) | 5m | ### 7.1.3.4.2 With Calibration Panel Place a calibration panel with the proper distance [93] in front of the test person. The calibration panel should have five calibration points in the following arrangement: Instead of the numbers there should be distinctive targets, like dots or crosses, without the corresponding numbers. Trials with labelled targets have shown that test persons first look at the numbers, then at the crosses, which would spoil the calibration process. Therefore the test person must be guided by voice output or by the operator to fixate the respective targets. The actual calibration points should roughly resemble this pattern in geometry. The exact distances between the points are not important. While the test person sits or stands comfortably without moving its head and looking at the calibration panel, the calibration pattern should cover most of the visual field of the test person. Watch the scene video to adjust the calibration panel properly. Perform a Manual Calibration 71, only that you move the calibration points at the same time, as follows: - 1. Start a calibration. - 2. The first centered point appears in the scene view. Move 74 the - point, so that it matches the first point on the calibration panel. Tell the test person to look at the first point. - 3. When the test person fixates the point, accept the point and proceed to the next. - 4. Repeat with all calibration points. Check the *Error* tab in the *System Log* window for potential problems during the calibration. If the *User* message in the *System Log* is "Calibration finished successfully", the scene video shows you live gaze data as a cursor overlay. After having calibrated all points you can check its accuracy by asking the test person to look at a specific point. #### 7.1.3.4.3 Without Calibration Panel Make sure the calibration points have default positions. To make sure, go to <u>Setup Calibration</u> [342], click on *Reset Calibration Points* and then on *OK*. Place the test person comfortably facing any flat plane, wall or similar, which serves as the calibration plane. If the test person wears a wide angle scene camera, the default calibration points in the corners are probably too far outside. In this case you can select from the <u>Calibration [314]</u> menu *Edit Points* and <u>move [74]</u> the corner calibration points nearer to the center. Otherwise the default positions need not be changed. The test person should be able to look at all the calibration points without moving its head. Perform a Manual Calibration 711 with the help of a laser pointer as follows: - Start a calibration. - 2. When the first calibration cursor appears in the center of the scene video, use the laser pointer to shine a light on the scene at the location of the calibration cursor. Get the test person to look at this point, while he or she should avoid moving his or her head. - 3. When the test person fixates the point, accept the point and proceed to the next. 4. Repeat with all calibration points. Check the *Error* tab in the *System Log* window for potential problems during the calibration. If the *User* message in the *System Log* is "Calibration finished successfully", the scene video shows you live gaze data as a cursor overlay. After having calibrated all points you can check its accuracy by asking the test person to look at a specific point. ### 7.1.3.5 Record and Save After Calibration 92 you are ready to record data. See Manual Data Recording 77 on how to start, stop recording and save the data. Normally, sound is recorded as well, if a microphone is connected and activated. See <u>Audio Recording</u> 410 for more details. #### Result As a result of the measurement two files will be created: - a video file with an overlay gaze cursor - an <u>IDF</u> [285] data file, which contains the numerical gaze data given in coordinates of the scene video. See also Analysis [78]. ## 7.1.4 Safety Notes Switch off all components before connecting or disconnecting cables. When setting up the system, make sure that all connectors and switches are easily accessible. Periodically check the technical safety of the device, e.g., check for damage to the housing etc. Servicing, adjustment or repair works may only be carried out by a certified distributor or SensoMotoric Instruments GmbH
(SMI). In case your iView X system or a component of the system is damaged, switch off the whole system and unplug it from the power source. Do not use the system until the system or its component has been repaired by a certified distributor or the manufacturer (SMI). Only use original components (cables, power supply etc.) from SMI. In case a component needs to be replaced, only replace it with original components from SMI. Do not repair the system by yourself. Electrical shock hazard. No part of the product may be modified or rebuilt. Any usage other then described in this manual is not permitted, can damage the device and eventually lead to associated risks such as short-circuit, fire, electric shock, etc. We do not assume liability for resultant damages to property or personal injury if the product has been abused in any way or damaged by improper use or failure to observe these operating instructions. In addition, any unauthorized modifications or repairs of the device will render the warranty null and void! #### LFD illumination To avoid unnecessary IR radiation for the eyes, switch off the system when not in use. The HED camera system uses invisible LED radiation Class 1. The used wavelength is 880 nm. ### Electromagnetic compliance WARNING: This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. ### Electrostatic sensitivity WARNING: All internal electronics are sensitive to high voltage or electrostatic discharge. The system can be destroyed if carelessly handled, so extreme care should be taken during set up and operation. ### **Operating Temperature** The system is designed to operate satisfactorily in an environment where the ambient temperature is between 10 °C and 50 °C, and that there is no water condensation present. ### Storage Temperature Do not store the equipment in an area where the temperature will drop below -10 $^{\circ}$ C or exceed 80 $^{\circ}$ C. Do not allow moisture to condense on the system. ## Packaging for shipment When shipping, use the shipping cartons in which the units were originally delivered. Do not ship the equipment in a cargo area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ## Disposal Dispose the device according to legal regulations. ## 7.1.5 Maintenance Switch off the system before cleaning. Use a clean lint-free, antistatic, slightly moistened cloth to clean the device. Do not use abrasives, detergents or solvents. Make sure that the camera modules do not come into contact with liquids during cleaning. # 7.2 iView X HED-MHT The iView Head Tracking HED (HED-MHT) system is an extension of the HED 80. It uses the same head-mounted interface but adds a 6D Magnetic Head-Tracker. The system tracks both eye movements and head position in space. Objects in the environment are identified so gaze vector intersection can be calculated. The HED-MHT is used for complex environments when gaze intersection with several defined planes is necessary. This may include simulators or complex industrial experiments. iView HED-MHT data consists of gaze vector in space and intersection point with defined planes (usually in millimeters). The iView HED-MHT system combines the advantages of the RED and the HED: During the experiment the test person can freely move in a certain perimeter, limited only by the radius of the magnetic transmitter. The output of the system is numerical gaze position data on various planes in a 3-D field, which can be processed automatically by other programs. Additionally, head position, head rotation and eye position are provided. #### See also: Features and Benefits of the HED system 81 # 7.2.1 Hardware Components The iView X[™] HED-MHT system can be used with the following components for head tracking: - Polhemus Fastrak System 101 For safety reasons switch off all components before connecting or disconnecting cables! # 7.2.1.1 HED-MHT with Polhemus Fastrak System The iView HED-MHT is an add-on to the HED 4 801. It adds a Polhemus FASTRAK motion tracking system. Additional required hardware components: - Polhemus System Electronics Unit (SEU) - Transmitter cube (TX) - Passive receiver (head sensor) mounted on the helmet of the HED - Lasermeter, with laser pointer and Stylus receiver integrated - Serial connection cable ## Cabling scheme: - The lasermeter is plugged into port 1 of the SEU. - The head sensor is plugged into port 2 of the SEU. - The transmitter cube is connected with the designated plug at the front side of the SEU. - The RS-232 connector of the SEU is connected with a free COM port of the iView X[™] workstation. - Identify the I/O Select Switch located on the rear panel of the SEU. Set the switches to the following positions: I/O Select Switch Settings | <u>Switch</u> | <u>Position</u> | |---------------|-----------------| | 1 | UP | | 2 | UP | | 3 | UP | | 4 | DOWN | | 5 | UP | | 6 | DOWN | |---|------| | 7 | DOWN | | 8 | UP | • Finally connect the power input connector with the power supply. ## 7.2.2 User Guide The following sections describe how to setup, calibrate and run an <u>HED-MHT</u> rool experiment. Check the connection between the head tracker and the iView X^{TM} workstation according to the wiring overview in section HED-MHT with Polhemus Fastrak System 101. Check, if the iView X[™] software is licensed to use Head Tracking HED, see Licensing 105 Some thought should be given to the measurement environment and its survey. Follow the steps that are described in the following sections The Measurement Model 105 The Transmitter 106 Plane Definition 108 Plane Properties 110 Surveying a single plane 111 Points on a Plane 114 Objects on a Plane 115 Calibration Plane 116 iView X has to be prepared to use Head Tracking HED, see Adding Head Tracking HED to iView X 119 A step-by-step software initialization procedure is provided in Initialization of Software 120 After the measurement environment is set up properly you can work with the test persons, which is described in Operating Procedure 124 Only if you need to disassemble the Lasermeter you should read Lasermeter Calibration 128 ## 7.2.2.1 Licensing ## Licensing iView XTM has to be licensed to use head tracking. Click on Help (396) License (398) to see if head tracking is currently licensed on your computer. If not, contact your vendor. If you purchased the head tracking component, you have to add the component to the License Key. To do so, you have to terminate the old license and ask SMI to issue a new License Key. See also SMI Software License (317) for more information on the licensing process. ## 7.2.2.2 The Measurement Model iView HED-MHT detects gaze points on various theoretically infinite planes in a 3-D field. The location of the planes must be surveyed before the actual experiments can be performed. In reality, though, there are no planes, so you have to design a measurement model, which fits your environment best. iView XTM handles up to 16 limited flat panels that we furthermore call "planes". On each plane you can define up to 16 areas of interest, furthermore called <u>objects on a plane litelled</u>, that will be dealt with later. One plane will be the <u>Calibration Plane litelled</u>, which leaves you 15 free selectable planes for your model. Thus, the next step will be: Divide your environment into not more than 15 even planes + 1 calibration plane. If you can integrate the calibration plane in your environment, you will have up to 16 planes for your model, but the calibration plane need not be integrated. The planes need not be necessarily right-angled. They can also be parallelograms. If you choose them right-angled, however, it will be easier later to check the accuracy of the survey. ## 7.2.2.3 The Transmitter The transmitter (TX) contains electromagnetic coils enclosed in a cube that emit the magnetic fields. The transmitter is the headtracker's reference frame for all measurements. Two types of transmitters can be used with the system: #### TX2 The 2-inch (5 cm) transmitter is best suited for experiments where only small head movements are expected. Working range is 10 to 80 cm. ### TX4 The 4-inch (10 cm) transmitter is used whenever a wider working range is needed. Please note that this transmitter requires a larger minimum distance to the sensor. Working range is 30 to 120 cm. Both the TX2 and the TX4 use the same mounting hole pattern so they are easily interchangeable. In iView Head Tracking experiments the test person can move freely within the working range of the transmitter: However, the working range is a hemisphere rather than a sphere. If the test person moves to the wrong side of the cube the data becomes invalid. The 'forbidden' hemisphere is the side, at which the cable leaves the cube. The test person can freely move in a hemisphere at the opposite site of the cube's cable exit. Considering this the next step of your preparations will be to find a proper place for the transmitter. The space between the transmitter cube and the test person's head should contain as little metal parts as possible. Typically the transmitter cube can stand on a (wooden) tripod near the test person's head. The cube can also be mounted at the ceiling, with the cable exit towards the ceiling. The center point of the transmitter is the origin of the Measurement Model [105]. Therefore it must be installed on a fixed ground and may not move. So the next step will be: • Find a suitable place for the transmitter (TX) inside of your measurement model. It must be mounted on a solid ground. ### 7.2.2.4 Plane Definition A plane is defined through three points in space. In the <u>Surveyor [449]</u> a plane is defined as follows: - Plane Origin in (x,y,z) coordinates based on the orgin of the measurement model - Direction U as a normalized (x,y,z) vector plus a Dimension of U (first
direction) Direction V as a normalized (x,y,z) vector plus a Dimension of V (second direction) The origin of the measurement model lies in the center point of the <u>Transmitter 108</u> (TX) cube. The vector resultant of a normalized vector has the dimension of 1. Therefore each component has necessarily a dimension < 1. To define a position of a point in a 3-D environment, the normalized vector must be multiplied with a dimension value. Thus, the room coordinates of, for example, the second point is given by the multiplication of the **Direction U** vector (x,y,z) with the **Dimension U** value. Direction U is also called **First Direction**, Direction V is called the **Second Direction**, respectively. These definitions are important to understand the <u>survey of a single plane</u> with the Surveyor. # 7.2.2.5 Plane Properties Each plane has a number and a description. It can be assigned the following properties: Calibration Plane: If checked the plane is used for Calibration. See Calibration Plane 118 for details. Monitor Plane: If checked, the plane is a monitor, on which an overlay cursor can be displayed. See also Scene HT Calibration 352 for details. ### Fill Style Solid: If it is solid you can assign a colour to the plane. **Bitmap:** If it is a bitmap you can enter the path of the bitmap that will be displayed in the plane. **Transparent:** If it is transparent, the plane is only used for calibration, but later during the experiment the plane will not be visible. See <u>Calibration</u> Plane 116 for details. Virtual: This property can not be used and is for internal use, only. In the <u>Surveyor 449</u> you can set the plane properties in the box at the top of the Surveyor user interface: # 7.2.2.6 Surveying a single plane The Measurement Model [105] will be completely surveyed in Cartesian coordinates in millimeter units. The origin of the coordinate system lies in the center point of the Transmitter [106] (TX) cube. If the transmitter is moved, all planes of the measurement environment must be surveyed again. For each point two shots of a the Lasermeter [128] is necessary to detect the point. The Surveyor calculates the intersection of the two laser beams. For best results the angle and distance between the two beams should be as big as possible, at least > 15 degrees. At the same time the lasermeter should be in the working range of the transmitter cube not too far from the transmitter: To survey the plane follow the steps: - 1. Start the <u>Surveyor [449]</u>. Make sure that you know how a <u>Plane [108]</u> is defined in the Surveyor. - 2. Choose the Plane Properties 110. Start with Plane 1. - 3. Press **Start Plane Sequence** in the **Geometry** box. The program will guide you through the measurement. - 4. The program will ask you for plane *origin first shot*. - Aim with the lasermeter from the first beam position at the first point to be acquired. Press the trigger on the *Stylus* receiver and hold the lasermeter still until the Surveyor confirms the measurement. - 6. The program will ask you for plane origin second shot. - 7. Acquire data as in step 5, but from the second beam position. - 8. The program will ask you for direction U first shot. - Aim with the lasermeter from the first beam position at the second point to be acquired. Press the trigger on the Stylus receiver and hold the lasermeter still until the Surveyor confirms the measurement. - 10. The program will ask you for direction U second shot. - 11. Acquire data as in step 9, but from the second beam position. - 12. The program will ask you for *direction V first shot* and finally for *direction V second shot*. Acquire the data for the third point in the same way. - 13. Check the accuracy: The data of the surveyed planes are displayed in the **Geometry** box. If your model consists of right-angled planes the displayed **Angle** should be 90 degrees. A deviation of 0.5 degrees would be tolerable. - 14. Proceed to the next plane and acquire the plane position as described in the previous steps. ### 7.2.2.7 Points on a Plane After <u>surveying a plane and the are plane and the plane and the plane are are plane are plane are plane are plane and the plane are pla</u> Click on **Start Point Sequence** to measure the points: For the <u>Calibration Plane [116]</u> we need to acquire the 13 calibration points on the plane. ## 7.2.2.8 Objects on a Plane After <u>surveying a plane additionally</u> up to 16 rectangular or elliptic objects can be additionally defined. For each object you need two shots of the lasermeter. ### 7.2.2.9 Calibration Plane One of the 16 planes of the Measurement Model has been the calibration plane. There are 13 points defined on the calibration plane. The targets must be arranged in a certain pattern (see figure). During calibration the test person has to fixate the targets in the correct order. 13-point calibration pattern During a calibration the presented 13-point calibration plane should only show the targets, not the corresponding numbers. Trials with labelled targets have shown that test persons first look at the numbers, then at the crosses, which would spoil the calibration process. Therefore the test person must be guided by voice output or by the operator to fixate the respective targets. It is advisable but not necessary to keep the head still during calibration. Since iView HED-MHT uses a 3D model for the test person's eye and head as well as for all the planes, head movement is taken into consideration and has absolutely no negative effect on calibration and measurement results. However, keeping the head still forces the test person to move the eyes rather than turning the head during calibration which results in a wider calibrated viewing angle and, thus, a better accuracy. For best resolution it is recommended to achieve an eye movement angle of approximately ±20 degrees horizontal and ±15 degrees vertical during calibration. This should determine the optimum size and position of the calibration plane. ### The transparent calibration plane In some applications the calibration plane can be part of the Measurement Model 1051, e.g. in reading research applications. In other applications, in which this is not possible, the Calibration Plane can be transparent. A transparent plane is only visible during the calibration process. Place the calibration plane with the 13 targets somewhere in front of the test person's view. This plane will be one of the 16 planes that can be measured with the Surveyor [449]. You have to tell the Surveyor that the plane is transparent by setting the Fill Style respectively: Survey the plane as described in the <u>Surveying a single plane unit section</u>. Calibrate the test person as described in the <u>Operating Procedure reserved</u> section. After calibration remove the calibration plane. When you start the experiment, the system is calibrated, but the calibration plane is no longer visible. The gaze points are calculated on all the other planes. ## Surveying the calibration plane - 1. Survey the plane as described in <u>Surveying a single plane 111</u>]. - 2. To acquire the 13 calibration points press *Start Point Sequence* in the Points on a Plane 114 box. - 3. To measure a point on the plane only one shot of the lasermeter is needed. If asked for the shot aim with the lasermeter at the first calibration target of the plane. Press the trigger on the Stylus receiver and hold the lasermeter still until the Surveyor confirms the measurement. - 4. Repeat with all the other targets. - 5. If you have finished measuring the 13th target cancel the point sequence, as we only need 13 points. # 7.2.2.10 Adding Head Tracking HED to iView X #### Initialization of Software For a step-by-step software initialization see section <u>Initialization of Software 120</u>. ## **Setup Hardware** You have to tell iView XTM that you have connected the head tracker. Go to <u>Setup Hardware [317]</u> and select under **Head Tracker** the *Polhemus* system. Go to the <u>Advanced [325]</u> tab and configure the system accordingly. ## **Setup Calibration** After you have at least surveyed a single plane (see <u>User Guide 104</u>), go to <u>Setup 101</u> Calibration 342 and select 13 Point Head Tracking HED as Calibration Method. Enter the paths for planes.ini and iview.ini which have been created by the <u>Surveyor 449</u>. ## **Setup Scene Overlays** If you need a scene video with parallax-free gaze cursor overlay you have to configure the scene overlay behaviour in <u>Setup</u>[316] <u>Calibration</u>[342] <u>Scene</u> <u>HT Calibration</u>[352]. ### 7.2.2.11 Initialization of Software Turn on the iView X[™] workstation. Start iView XTM by double-clicking on the iView XTM icon. Next, iView X^{TM} must be initialized to run with this configuration. Therefore, the iView X^{TM} program must be told, which hardware components we use. Usually, it will be done only once on installation, but just in case, the software must be reinitialized, check the following: From the Setup [316] menu go to Hardware [317]. - Set Eye Tracker Device to HED 4. - Click on Advanced. - On the Eye Tracking 326 tab choose, if left or right eye will be tracked and recorded - Click on OK to close the Advanced dialog. - Click on OK to close the Setup Hardware dialog. Activate eye camera by clicking on the Eye Control 373]. Arrange docking windows. - Go to the View set menu and set a check mark to the following windows: Align all windows around the Scene Image Window as suggested below: A typical iView X[™] window arrangement (HED systems) From the menu go to Setup 3161 - Calibration 3421. - Set Calibration Method to 13 Point Head Tracking HED. Calibration Settings for HED-MHT (upper part) - Uncheck Accept Points Automatically, because we will do a manual calibration. - Check Audio Feedback on next point. - Uncheck *Randomize Point Order*. As we do a manual calibration we have to know the calibration point order. - Check
Wait for Valid Data. - Set Check Level to Medium. Calibration Settings for HED systems (lower part) Click on OK to close the window. From the Setup 316 menu go to Output 354. - Go to the Gaze Cursor Properties 357 tab. - If needed, enlarge the sizes of all cursors (left, right and calibration cursor) so that the targets can be comfortably look at. Adjust color to the scene. The cursors will be overlayed on the scene video during recording, so choose a color that can be easily distinguished from the scene. - Go to the Gaze Cursor Filter 356 tab. - Set Method to Manual. - Set Filter Depth to 100 ms and Saccade Length to 20 pixel. - Click on OK to close the window. ## 7.2.2.12 Operating Procedure If your measurement environment is setup properly, you can work with your test persons. The following steps describe the typical steps to be done with each test person to perform the experiment. Helmet and Eye Video Setup Helmet Sensor Alignment Calibration Record Data Page 122 ## 7.2.2.12.1 Helmet and Eye Video Setup # Helmet adjustment Turn the wheels on both side of the helmet to loose the camera bracket. Turn the bracket slightly upwards, so the helmet can be easier put on. Place the helmet on the test person's head, thereby avoid touching the IR mirror. Adjust the helmet size, so it is snug enough to avoid slipping during the experiment. Turn back the bracket downwards, until the eye is visible in the eye control. Tighten the bracket wheels. ### Eye camera adjustment Loosen the wheel in front of the bracket, so the eye camera and mirror assembly can be moved from left to right. It also can be tilted. Adjust the eye camera, so that the pupil is centered in the eye control window. Thereby, the IR mirror should not touch the test person's face. If there are distorting reflections in the eye image, as coming from glasses, the IR mirror can be tilted, until the reflections leave the eye image. Then fasten the wheel again. Rotate the focus ring at the eye camera to focus the eye image. Use the cornea reflex as indicator: The eye image is sharpest if the cornea reflex is smallest. If the eye tracker has difficulties to track the pupil or CR go to the <u>advanced</u> options $\frac{402}{1}$. Check Dynamic Threshold. If you right-click on the scene video, a context menu 91 pops up. ## 7.2.2.12.2 Helmet Sensor Alignment After the helmet is mounted on the test person's head, the system needs the following offset values: Eye Offset 125 Scene Camera Offset 126 (only for scene video recording) # Eye Offset The system needs to know the position of the measured eye relative to the head sensor. Follow the steps: - Close iView X. - 2. Start Surveyor 449. - Go to Setup | Eye Offset. - 4. Click on Measure. - 5. Ask the test person to close his eyes. - 6. Put the cap on the lasermeter's aperture. - 7. Hold the lasermeter at the eye of the test person. **Do not trigger** the laser pointer. - 8. Press the trigger on the *Stylus* receiver and hold the lasermeter still until the Surveyor confirms the measurement. - 9. Proceed to *Scene Camera Offset* or close the Surveyor and launch iView X again. ### Scene Camera Offset If you do not need a scene video you may skip the alignment of the *Scene Camera Offset* and directly proceed to the next step. If you need a parallax-free scene video the system needs to know the position of the scene camera relative to the head sensor. - 1. Go to Setup | Camera Offset. - Click on Measure. - Ask the test person to close his eyes. - 4. Put the cover on the lasermeter's aperture. Hold the lasermeter at the scene camera. **Do not trigger the laser pointer.** - 5. Press the trigger on the *Stylus* receiver and hold the lasermeter still until the Surveyor confirms the measurement. - 6. Close the Surveyor and launch iView X again. #### 7.2.2.12.3 Calibration - 1. Check that the test person is properly seated in front of the Calibration Plane 116. - 2. Normally, the scene video is not needed. But in case you need a meaningful scene overlay with an overlaid gaze cursor, you have to calibrate the scene video under Setup [316] Calibration [342] Scene HT Calibration [352]. - 3. Perform a Manual Calibration 71. Guide the test person through the calibration process. As the calibration pattern is fixed you have to tell the test person at which target he or she should look next. - 4. If the calibration is successful, the Online Data 370 window will begin showing live gaze data. - 5. Start HE Visual to check the accuracy of the measurement. ### **Drift Correction** - 1. Occasionally it is beneficial to run a drift correction. This is a one-point calibration that corrects for any drift that may have entered the system. Choose in the Calibration menu [314] Drift Correction [315]. - 2. Guide the test person to look at the center point of the Calibration Plane - 3. When the test person has fixated, press the F6 key to accept the drift correction point. The system is now corrected for drift. - 4. If at any time the HED IR mirror, the scene camera, or eye camera are moved, the system must be recalibrated. Drift correction will only correct linear changes such as the slipping of the helmet. - 5. Alternatively, ask the test person to look at a certain point. You see if there is an offset in the scene video. You can manually shift the gaze to the fixation point by using Shift+Ctrl+Cursor keys. #### 7.2.2.12.4 Record and Save After Calibration 92 you are ready to record data. See Manual Data Recording 77 on how to start, stop recording and save the data. #### Result As a result of the measurement two files will be created: - a video file with an overlay gaze cursor - an IDF 285 data file, which contains the numerical gaze position data on various planes in a 3-D field. See also Analysis 781. #### 7.2.2.13 Lasermeter Calibration The iView HED-MHT system will be delivered with an already calibrated lasermeter. The following section is only of importance if you need to disassemble the lasermeter. The Lasermeter consists of a tube in which a laser pointer and a FASTRAK Stylus receiver is integrated. With the lasermeter all measurements for the environment survey are performed. For the accuracy of the measurement it is crucial to calibrate the lasermeter before first use and after disassembling. The tripod delivered with the system has a marked reference point with coordinates printed on the transmitter (TX) mounting. If the transmitter is disassembled from the tripod and needs to be mounted again, the reference point must be remeasured, see <u>Reference Point Measurement</u> 131. Try to perform the calibration in a preferably metal free area and avoid the presence of other magnetic fields. #### The Calibration Process With a known reference point two values are necessary to calibrate the lasermeter: the *Offset* and the *Direction*. Offset: The offset is the distance between the *Stylus* receiver and the laser pointer. *Direction:* The direction describes the angular deviation between receiver and laser pointer. To perform the calibration follow the steps: #### Offset Measurement: - 1. Start the Surveyor 449. - 2. Select Setup | Laser Meter - 3. Click on **Measure** under the **Beam Offset** column. - 4. Hold the lasermeter's end at the reference point. - Press the trigger on the Stylus receiver and hold the lasermeter still until the Surveyor confirms the measurement. #### Direction Measurement: - Click on Measure under the Beam Direction column. - 7. Hold the lasermeter parallel to the ground and aim with the laserpointer at the reference point at a distance of approximately 30 to 40 cm. - 8. Press the trigger on the *Stylus* receiver and hold the lasermeter still until the Surveyor confirms the measurement. - 9. Click on OK to accept the measurement. ### Reference Point Measurement In case you need to change the TX mounting, a new reference point must be set: - Choose a new reference point. The reference point should be within the working range of the transmitter. If you use the tripod with its marked reference point, the transmitter should be mounted on the tripod so that the cable exit lies on the opposite side of the reference point. - 2. Select Setup | Preferences from the Surveyor 449. - 3. Click on Measure in the LaserMeter box. - 4. Disassemble the lasermeter and hold the nose of the *Stylus* receiver at the new reference point. - 5. Press the trigger on the *Stylus* receiver and hold the lasermeter still until the Surveyor confirms the measurement. - 6. Click on OK to accept the measurement. - 7. Reassemble the lasermeter and proceed with offset and direction measurement of the lasermeter's <u>calibration process</u> 130. # 7.2.3 Safety Notes Switch off all components before connecting or disconnecting cables. When setting up the system, make sure that all connectors and switches are easily accessible. Periodically check the technical safety of the device, e.g., check for damage to the housing etc. Servicing, adjustment or repair works may only be carried out by a certified distributor or SensoMotoric Instruments GmbH (SMI). In case your iView X system or a component of the system is damaged, switch off the whole system and unplug it from the power source. Do not use the system until the system or its component has been repaired by a certified distributor or the manufacturer (SMI). Only use original components (cables, power supply etc.) from SMI. In case a component needs to be replaced, only replace it with original components from SMI. Do not repair the system by yourself. Electrical shock hazard. No part of the product may be modified or rebuilt. Any usage other then described in this manual is not permitted, can damage the device and eventually lead to associated risks such as short-circuit, fire, electric shock, etc. We do not assume liability for resultant damages to property or personal injury if the product has been abused in any way or damaged by improper use or failure to observe these operating instructions.
In addition, any unauthorized modifications or repairs of the device will render the warranty null and void! ## **Additional Power Supply Safety Notes** Only use connecting cables provided by the manufacturer (SMI). Make sure the conductive earth wire is not broken, disconnected, removed or interrupted as this can pose a serious threat to life in the event of malfunction. The device must only be operated in dry, indoor spaces. Take precautions to make sure that the insulation of the entire product, the safety sockets, connected cables and mains cables are neither damaged nor destroyed. Always use fuses of the specified type and rating. It is impermissible to use repaired fuses! Never operate the device without supervision while loads are connected. Ensure to protect connected loads from the effects of operational disturbance as well as overvoltages. Do not use the power supply as a direct or indirect charging device. The device shall not be subjected to heavy mechanical stress. The device must not be exposed to extreme temperatures, direct sunlight, intense vibration or moisture. Position the device on a level and sturdy surface. The device generates operational heat. Never insert any objects, block cooler opening of the device, or hinder ventilation in any form or manner. The device is predominantly cooled by convection. Never put a naked flame or any containers with liquids on or near the apparatus. Caution! Capacitors within the device may retain their charge even if the device is disconnected from all power sources. Never turn on the device immediately after it has been brought from a cool into a warmer environment. Condensing water might destroy your device. Leave the device in OFF position and wait until it has reached ambient temperature. Before operating the device, make sure that your hands, shoes, clothing, the floor as well as the device itself are dry. During thunderstorm, unplug the device's power plug from the mains outlet in order to avoid damages due to excess voltage. In industrial facilities, the safety regulations laid down by the professional trade association for electrical equipment and facilities must be observed. In schools, training facilities, DIY and hobby workshops, the usage of electrical devices is to be supervised by trained personnel. If there is reason to believe that safe operation is no longer possible, the device is to be put out of operation and secured against unintended operation. Safe operation is no longer possible if: - -the device has sustained visible damages, - -the device no longer works, - -and the device was stored under unfavorable conditions for a long period of time. - -the device was subject to considerable transport stress. This device is not a toy and should be kept out of reach of children! Should you have any questions that are not answered in this operating manual, please contact our technical customer service, or other experts. #### LFD illumination To avoid unnecessary IR radiation for the eyes, switch off the system when not in use. The HED camera system uses invisible LED radiation Class 1. The used wavelength is 880 nm. ### Electromagnetic compliance WARNING: This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. ### Electrostatic sensitivity WARNING: All internal electronics are sensitive to high voltage or electrostatic discharge. The system can be destroyed if carelessly handled, so extreme care should be taken during set up and operation. ## **Operating Temperature** The system is designed to operate satisfactorily in an environment where the ambient temperature is between 10 °C and 50 °C, and that there is no water condensation present. ## Storage Temperature Do not store the equipment in an area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ## Packaging for shipment When shipping, use the shipping cartons in which the units were originally delivered. Do not ship the equipment in a cargo area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ## Disposal Dispose the device according to legal regulations. ### 7.2.4 Maintenance Switch off the system before cleaning. Use a clean lint-free, antistatic, slightly moistened cloth to clean the device. Do not use abrasives, detergents or solvents. Make sure that the camera modules do not come into contact with liquids during cleaning. # 7.3 iView X RED 4 (FireWire) The Remote Eyetracking Device (RED) is developed for absolutely contactfree measurement of eye movements with automatic head-movement compensation. The camera views the eye without touching the test person. The RED configuration is most often used when there is a confined stimulus area such as a computer monitor, poster or beamer projection. Eye movements are defined in units appropriate to the stimulus. The system compensates for head movements by tracking the corneal reflex. With the iView RED system the researcher obtains numerical gaze data in units of the calibration area, which can be automatically post-processed by other programs, e.g. for statistical analysis. The working range is limited to one flat panel with a strictly limited dimension. The test person cannot move freely and must sit or stand still during the experiment. Only small head movements are compensated. ### 7.3.1 Features and Benefits The iView X RED system is an actual remote, non-invasive eye tracking system for gaze position tracking on a TFT monitor, projection screen, or magazine. It excels in a very easy setup and usage, full automatic tracking and accurate recordings. ### Technology - Non-invasive, video-based eye tracking - Binocular, multiple feature and pupil-CR, dark-pupil tracking ### **Performance** | Sampling rate | 50/60 Hz | |--|----------------------------------| | Tracking resolution | < 0.1° (typ.) | | Gaze position accuracy | < 0.5° (typ.) | | Operating distance subject -
camera | 60 - 80 cm | | Head tracking range | 40 x 20 cm at 70 cm distance | | Viewing angle | approx. ± 30° hor. / 22.5° vert. | | | | ## System | P | |---| | 1 | Workstation Desktop / Notebook ### Interface - Contact-free, remote-controlled infrared eye camera with automatic eye and head tracker - Flexible three-in-one setup for screen, projector and print media, comes with mounts for monitor, stand-alone and magazines ### **Auxiliary Devices / Communication** - · Audio channel recording - Open communication interface via Ethernet (UDP) - Easy integration with third-party stimulus and analysis packages such as Presentation®, E-Prime®, Superlab™, MATLAB®, SPSS®, Excel™ and others ### System Options - SMI Experiment Suite 360° (incl. BeGaze[™] & Experiment Center[™]) - Application Programming Interface (API) - Flightcase ## **Approvals** • CE, EMC, Eye Safety ## 7.3.2 Hardware Components The RED 4 (FireWire) 139 consists of the following components - an eye tracking module (<u>ET module</u> 139) with a FireWire connection to the computer - an Illumination Controller (e-box 140) Sampling rates can be selected between 50 and 60 Hz. For safety reasons switch off all components before connecting or disconnecting cables! ## 7.3.2.1 RED 4 (FireWire): ET Module #### RED ET module The RED 4 (FireWire) eye tracking module (ET module) observes the test persons eyes. It uses infrared LEDs to illuminate the eyes. Please also consider the <u>Safety Notes 157</u>1. ### Connectors at the rear side of the camera unit: Power must be connected with the Power connector of the e-box. Trigger must be connected with the Trigger connector of the e-box. Video must be connected with the Firewire connector of the iView X workstation. ## 7.3.2.2 Illumination Controller (E-Box) The illumination controller (e-box) is used to control the RED 4 (FireWire) camera and its illumination. #### **Connectors and Switches** **Power** must be connected with the *Power* connector of the eye tracking unit. *Trigger* must be connected with the *Trigger* connector of the eye tracking unit. The power supply plug must be connected with the mains supply. The E-Box is designed in compliance with the protection class 1. It is only approved for connection to sockets with protective grounding and an alternating current of $100-240V \sim 50/60Hz$ commonly used domestically. #### **Power Switch** To switch on the e-box the power switch must be pushed upwards (the green indicator light then comes on). To switch off the e-box the power switch must be pushed downwards to the '0' position (green indicator light off). #### Fuses The fuses box contains the fuse and a spare fuse. Depending on the region in which the e-box is used it contains 100V: T 2.5 A/250V AC or 230V: T 1.25A /250V AC. Do not replace the fuses by yourself. Servicing, adjustment or repair works may only be carried out by a certified distributor or SensoMotoric Instruments GmbH (SMI). #### COM The com interface is a communication interface only used by the manufacturer. #### See also: - Safety Notes 157 - Maintenance - Explanation of Symbols 4 ### 7.3.3 User Guide The RED can be combined with various stimulus presentation setups, in which the stimulus may be another computer monitor, a projector or TV. A stimulus program may run on the iView X workstation or on a second Stimulus PC, see Experimental Setup Examples 142. iView X needs to be initialized to run with the RED. Usually, it will be done only once on installation, but just in case, it needs to be re-initialized, see ### Initialization of Software 143. In case you use SMI Experiment Center or another supported software to present the stimulus, you need to <u>establish an ethernet connection</u> 60 between the stimulus PC and the iView X workstation.
Dependent on the way the stimulus is presented the RED has to be setup in the right mode of operation [146]. The following guide describes the steps how to set up, calibrate and run an iView X RED experiment, after the system has been wired 139 properly. ## 7.3.3.1 Experimental Setup Examples ### Two PC setup On the **Stimulus PC** a stimulus presentation software, such as *SMI Experiment Center*, must be installed. ### Single PC setup with two monitors If the iView X Workstation is a Laptop, connect the RED monitor with the Laptop, then direct the monitor output to the RED monitor. ### 7.3.3.2 Initialization of Software Turn on the iView X workstation. Start iView X by double-clicking on the iView X icon. Next, iView X must be initialized to run with this configuration. Therefore, the iView X program must be told, which hardware components we use. Usually, it will be done only once on installation, but just in case, the software must be reinitialized, check the following: From the Setup [316] menu go to Hardware [317]. - Set Eye Tracking Device to RED 4 (FireWire). - Click on Advanced and choose the tracking mode or sample rate. - Click on OK to close the Setup Hardware dialog. Arrange docking windows. - Go to the View 367 menu and set a check mark to the following windows: Align all windows around the Scene Image Window as suggested below: A possible iView X RED window arrangement From the menu go to Setup [316] - Output Gaze Cursor Properties [357]. - If needed, enlarge the sizes of all cursors (left, right and calibration cursor) so that the targets can be comfortably look at. - Click on OK to close the window. The Scene Image has a context menu 1451. ## 7.3.3.2.1 Context Menu: RED Scene Image If you right-click on the RED scene image, a context menu pops up. ## **Open Scene Image** Opens a file selection box, in which you can select a scene image. #### Stretch View Stretches the scene image so it best fits into the iView X workspace. ### **Copy Scene** Copies contents of scene image window to clipboard. ### **Show AOIs** Shows or hides any drawn AOIs 4081. ## 7.3.3.3 Modes of Operation Dependent on the way the stimulus is presented RED can be used in three different modes of operation: | Stimulus presented on/via: | Mode of Operation: | |--|--------------------------------| | computer monitor | monitor integrated [146] | | television, poster, projector/beamer | stand alone 149 | | book, magazine, newspaper with a maximum landscape size (A3) | used with a document stand 153 | ## 7.3.3.3.1 RED Monitor Integrated In the *Monitor Integrated* operation mode the <u>ET module [139]</u> is fixed with a screw on the adapter plate, which is located behind the monitor. The ET module is placed right underneath the monitor in a specified position. Both monitor and ET module work as a unit, thus, the height of the monitor cannot be changed. RED Monitor Integrated is used in cases, where the monitor is used as stimulus screen. The following steps describe how to set up and run a typical iView RED experiment: Setup Calibration 147 Test Person Placement 156 Run Experiment 157 # 7.3.3.3.1.1 Setup Calibration From the menu go to Setup 316 - Calibration 342. - Set Calibration Method to 5 Point RED. - Check Accept Points Automatically. - Check Audio Feedback on next point. - Check Wait for Valid Data. - Set Check Level to Medium. Calibration Settings for RED systems (lower part) - Go to the RED Operation Mode 349 tab. - Set Operation Mode to Monitor Integrated. - Select the size of the used stimulus monitor (19" or 22"). - You can change the calibration point positions, if you click on *Edit* (not available for 2-point calibration). - Set Stimulus Screen Resolution to the size of the bitmaps that will be presented. (Typical sizes are 1024x768, 1280x1024 or 1680x1050). The values will be stored in the iView X data file. Later analysis tools may use these values. - Click on OK to close the window. ### 7.3.3.3.2 RED Stand Alone To use the RED stand alone, the RED eyetracking module (ET module) can be mounted on a special stand alone foot. Unplug all cables before mounting the RED. The RED stand alone can be used in cases, where the stimulus area is a beamer projection screen, television screen or similar. The following steps describe how to set up and run an iView RED Stand Alone experiment: Experimental Setup 150 Set Calibration Points 152 Test Person Placement 156 Run Experiment 157 ### 7.3.3.3.2.1 Experimental Setup #### **RED Placement** The stand alone RED should be placed on a stable underground between the test person and the screen to watch. The RED should observe the test person's eyes from below, so the RED is inclined upwards. The RED may not cover the test person's field of vision. #### Screen The screen can be a monitor, a television screen, projection screen or similar. Note that - the screen has to be planar - the screen has to be at right angle with the floor - the screen's bottom line has to be parallel to the floor ### **Arrangement of components** Arrange the RED eyetracking module and screen as shown below: Geometrical setup of a stand alone RED #### **RED to Screen Placement** - The RED ET module should always be horizontally centered to the screen. - The screen bottom line has to be aligned parallel to the RED. ### **Setup Calibration** From the menu go to Setup [316] - Calibration [342]. - Set Calibration Method to 5 Point RED. - Set Accept Points Automatically depending on the calibration point presentation. - Check Audio Feedback on next point. - Check Wait for Valid Data. - Set Check Level to Medium. #### **Profile** In the profile the geometrical setup dimensions are stored. In the Setup Calibration dialog go to the RED Operation Mode [349] tab. Select Stand Alone mode: Select a profile or create a new one by clicking on the *New* button. Measure the distances of your geometrical setup and fill in the appropriate fields in the dialog box. ### **Placement Suggestion** If you are not sure, where to put the RED, you can also use a *Placement Suggestion*. Check *Use Placement Suggestion.* Determine the eye height of the test persons and choose between the following options: - 80-110 cm: for test persons sitting comfortably on a couch or similar. - 110-140 cm: usual height for test persons setting at a desk. - 140-180 cm: for test persons who are standing during the experiment. Measure the stimulus screen dimension and distance, enter the values, then click on *Suggest RED Placement*. The required position of the RED is filled in automatically. Place your RED according to the suggestions. #### **Review Profile** To review if the profile fits, place an average test person in front of the RED and check if the eyes are in the middle of the tracking monitor, if this is not the case, correct the distance RED to floor and the RED inclination angle and correct the parameters in the profile. #### 7.3.3.3.2.2 Set Calibration Points If your stimulus is not presented through a <u>supported stimulus software [75]</u>, but is a poster or similar, you need to set the calibration points manually as follows: - 1. Define a calibration area 66 on the stimulus. - 2. Affix calibration markers either for 5- or 9-point calibration. Example for the position of the markers for a 9-point calibration: Instead of the numbers there should be distinctive targets, like dots or crosses, without the corresponding numbers. The calibration marker positions should roughly resemble this pattern in geometry. The exact distances between the points are not important. - 3. Take a digital photo of the stimulus. - Load the photo into a photo editor and cut the photo to the stimulus screen dimension. You might map one pixel to one unit of your screen dimension. - 5. Select the profile and click on the Points tab 350. - 6. Load the photo. The iView X calibration points will be overlaid over the photo. - 7. Move the overlaid calibration points by drag & drop to the marker positions. #### 7.3.3.3.3 RED Document Stand The RED Document Stand adds a holder (document stand) for printed material to the <u>RED Monitor Integrated [146]</u>. The document stand can be easily attached to the monitor. The following steps describe how to set up and run an iView RED Document Stand experiment: Document Stand Setup 154 Test Person Placement 156 Run Experiment 157 with Use of Calibration Panel 155 ### 7.3.3.3.1 Document Stand Setup #### Setup Calibration From the menu go to Setup 316 - Calibration 342. - Set Calibration Method to 5 Point RED. - Do not Accept Points Automatically. - Check Audio Feedback on next point. - Check Wait for Valid Data. - Set Check Level to Medium. ### **Setup Operation Mode** Go to the <u>RED Operation Mode</u> [349] tab. Select *Document Stand*: Choose from the list the document format (A4 portrait or A3 landscape). Enter the size of your document in the *Physical Document Dimension* fields. Click on *OK* to save changes. #### **Document Stand Placement** - Attach the Document Stand onto the monitor and check that - the Document Stand is parallel to monitor. - the Document Stand is centered to the monitor. - 2. Place the document on the document stand and check that - the document is parallel to the document stand. - the document is centered to the document stand. - the document is planar. ### 7.3.3.3.3.2 Use Calibration Panel The Document Stand is provided with two sizes of calibration panels: - A4 portrait - A3 landscape Depending on your <u>Document Stand Setup</u> 154 use the appropriate sized calibration panel for the calibration process as follows: ## **Calibration and Data Recording** - 1. Place the calibration panel on the document and check that - the calibration panel is parallel to the Document Stand. - the calibration panel is centered to the document. - 2. Do a Manual Calibration 71. - 3. Remove the calibration panel. - 4. Start a Manual Recording 77. RED Tracking
Monitor - 1. Place a test person in a comfortable position in front of the <u>RED ET Module</u> (139) according to your experimental setup. - 2. If the eyes are tracked by the system, two white eye dots are visible in the RED Tracking Monitor. - 3. If tracking is lost the white dots have disappeared from the RED Tracking Monitor. - Arrows indicate the optimum position of the test person in front of the ET Module: - If the test person is too far away an arrow indicates that he or she should move closer: If the test person is too close an arrow indicates that he or she should increase the distance: Other arrows direct the test person to center his or her head in front of the ET Module. The test person is correctly placed if all arrows have vanished. A correct test person to ET Module distance should be between 60 and 80 cm. ## 7.3.3.5 Run Experiment Now you are ready to run an experiment. ### **Data Recording** Data recording can be automatically controlled by the stimulus program or can be performed manually. The type of data recording depends on the way the stimulus is presented: | Stimulus Presentation using | Type of Data Recording: | | |--|---|--| | RED Monitor Integrated with supported stimulus program 75 | Automated Data Recording 75 | | | RED Stand Alone with projector/
beamer, TV and supported
stimulus program 75 | Automated Data Recording 75 | | | RED Stand Alone with poster | Manual Data Recording 77 | | | RED Document Stand with book, magazine or newspaper | Manual Data Recording 777 with Use of Calibration Panel 1551. | | ## **Analysis** The result of the measurement is stored to an .idf file 285, see Analysis. 781 ## 7.3.4 Safety Notes Switch off all components before connecting or disconnecting cables. When setting up the system, make sure that all connectors and switches are easily accessible. Periodically check the technical safety of the device, e.g., check for damage to the housing etc. Servicing, adjustment or repair works may only be carried out by a certified distributor or SensoMotoric Instruments GmbH (SMI). In case your iView X system or a component of the system is damaged, switch off the whole system and unplug it from the power source. Do not use the system until the system or its component has been repaired by a certified distributor or the manufacturer (SMI). Only use original components (cables, power supply etc.) from SMI. In case a component needs to be replaced, only replace it with original components from SMI. Do not repair the system by yourself. Electrical shock hazard. No part of the product may be modified or rebuilt. Any usage other then described in this manual is not permitted, can damage the device and eventually lead to associated risks such as short-circuit, fire, electric shock, etc. We do not assume liability for resultant damages to property or personal injury if the product has been abused in any way or damaged by improper use or failure to observe these operating instructions. In addition, any unauthorized modifications or repairs of the device will render the warranty null and void! ## **Additional E-Box Safety Notes** Only use connecting cables provided by the manufacturer (SMI). Make sure the conductive earth wire is not broken, disconnected, removed or interrupted as this can pose a serious threat to life in the event of malfunction. The device must only be operated in dry, indoor spaces. Take precautions to make sure that the insulation of the entire product, the safety sockets, connected cables and mains cables are neither damaged nor destroyed. Always use fuses of the specified type and rating. It is impermissible to use repaired fuses! Never operate the device without supervision while loads are connected. Ensure to protect connected loads from the effects of operational disturbance as well as overvoltages. Do not use the power supply as a direct or indirect charging device. The device shall not be subjected to heavy mechanical stress. The device must not be exposed to extreme temperatures, direct sunlight, intense vibration or moisture. Position the device on a level and sturdy surface. The device generates operational heat. Never insert any objects, block cooler opening of the device, or hinder ventilation in any form or manner. The device is predominantly cooled by convection. Never put a naked flame or any containers with liquids on or near the apparatus. Caution! Capacitors within the device may retain their charge even if the device is disconnected from all power sources. Never turn on the device immediately after it has been brought from a cool into a warmer environment. Condensing water might destroy your device. Leave the device in OFF position and wait until it has reached ambient temperature. Before operating the device, make sure that your hands, shoes, clothing, the floor as well as the device itself are dry. During thunderstorm, unplug the device's power plug from the mains outlet in order to avoid damages due to excess voltage. In industrial facilities, the safety regulations laid down by the professional trade association for electrical equipment and facilities must be observed. In schools, training facilities, DIY and hobby workshops, the usage of electrical devices is to be supervised by trained personnel. If there is reason to believe that safe operation is no longer possible, the device is to be put out of operation and secured against unintended operation. Safe operation is no longer possible if: -the device has sustained visible damages, - -the device no longer works, - -and the device was stored under unfavorable conditions for a long period of time. - -the device was subject to considerable transport stress. This device is not a toy and should be kept out of reach of children! Should you have any questions that are not answered in this operating manual, please contact our technical customer service, or other experts. #### LFD illumination To avoid unnecessary IR radiation for the eyes, switch off the system when not in use. The ET module uses invisible LED radiation Class 1. The used wavelength is 870 nm. Invisible LED radiation Class 1M may leak when camera housing is opened. Do not view directly with optical instruments when device is opened. ## Electromagnetic compliance WARNING: This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. ## Electrostatic sensitivity WARNING: All internal electronics are sensitive to high voltage or electrostatic discharge. The system can be destroyed if carelessly handled, so extreme care should be taken during set up and operation. ### **Operating Temperature** The system is designed to operate satisfactorily in an environment where the ambient temperature is between 10 °C and 50 °C, and that there is no water condensation present. ### Storage Temperature Do not store the equipment in an area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ### Packaging for shipment When shipping, use the shipping cartons in which the units were originally delivered. Do not ship the equipment in a cargo area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ### Disposal Dispose the device according to legal regulations. ### 7.3.5 Maintenance Switch off the e-box, disconnect all connection cables before cleaning. The e-box is maintenance-free besides replacing fuses if needed. Use a clean lint-free antistatic slightly moistened cloth to clean the device. Do not use abrasives, detergents or solvents. Make sure that the camera modules do not come into contact with liquids during cleaning. ### 7.3.6 Technical Data ## 7.3.6.1 RED 4 (FireWire) E-Box The following specifications are at nominal input voltages at 25°C unless otherwise specified. #### INPUT VOLTAGE: Nominal 100-120V AC, 220-240V AC, range: 85-265V AC (0 to 100% load, -10 to 60°C); DC range: 120 -370V DC The power supply may shut down if operated below the input voltage range or if the input voltage increases slowly at start up (> 1 second)]. To reset the power supply, wait one minute and reapply input power. ### INPUT SOURCE FREQUENCY: Nominal 50/60 Hz; Range 47-66 Hz. (Above 66Hz to 440 Hz the leakage current exceeds the VDE safety specification limit.) **INPUT CURRENT:** (maximum load at 25°C with nominal output voltage): 2.0A typ., 2.7A max. (100 V AC input, 100% load); 0.8A typ., 1.5.A max. (240 V AC input, 100% load) **INPUT PROTECTION AND SOFT START:** A thermistor circuit reduces start-up surge. Units are protected against shorts by an input fuse. Fuse value 5A, 250V. OUTPUT VOLTAGE: 15V +/- 0.75V POWER CONSUMPTION (max.): 150 W **OPERATING TEMPERATURE:** -10 to 60°C (start up -20 to -10°C). STORAGE TEMPERATURE: -30°C to + 75°C. **COOLING:** Natural convection **ORIENTATION:** Horizontal or vertical **HUMIDITY:** 10% to 90% relative humidity, operating and storage, noncondensing, wet bulb temperature < or = 35°C #### WITHSTAND VOLTAGE (at 5 to 35°C ambient, 45 to 85% relative humidity, cutout current 10 mA): Between input and output terminals, 3000V AC for 1 minute. Between input terminals and ground, 2000V AC for 1 minute. Between output terminals and ground, 500V AC for 1 minute. **INSULATION RESISTANCE:** Between input and output, input and ground, output and ground 100 megohms minimum (500V DC, 5 to 35°C ambient, 45 to 85% relative humidity) VIBRATION: Three axes, one hour each, sweep time 10 min:, nonoperating 5-10 Hz., 10 mm amplitude 10-200 Hz., 2G (19.6m/s2) acceleration **SHOCK:** Three axes, 60G (588m/s2), 11 ms ±5 msec pulse duration, three shocks each axis, nonoperating, 1/2 sine pulse **SAFETY:** All units designed to meet UL
60950-1.c, and TÜV Rheinland EN60950-1 (ambient temp. 50°C max.). JBW 150W units are CE marked per the Low Voltage Directive (LVD), EN60950. #### **EMC - EMISSIONS:** Conducted Noise 0.15MHz to 30MHz: FCC Class B, VCCI-B, EN55011-B, EN55022-B. Input Harmonics (on AC Mains) 0 to 2KHZ: EN 61000-3-2. EMC - IMMUNITY: Designed to meet EN 50082-2. ESD: EN 61000-4-2 Level 4, Normal operation. Radiated Field Noise: EN 61000-4-3 Level 3, Normal operation. Electrical Fast Transient/Burst (EFT): EN 61000-4-4 Level 3, Normal operation. Surge: EN 61000-4-5 Level 4, no damage. Conducted Noise: EN 61000-4-6 Level 3, Normal operation. Power Frequency Magnetic Field: EN 61000-4-8 Level 4, Normal operation. Interruptions and voltage dips, short variations: EN 61000-4-11, Normal operation. ### **FUSES:** T 2.5 A / 100 V AC T 1.25 A / 230 V AC **PROTECTION CLASS: 1** **DIMENSIONS (L x W x H in mm):** 270 x 180 x 70 WEIGHT: 1.6 kg # 7.4 RED, RED250, RED500 The Remote Eyetracking Device (RED) is developed for absolutely contactfree measurement of eye movements with automatic head-movement compensation. The camera views the eye without touching the test person. The RED configuration is most often used when there is a confined stimulus area such as a computer monitor, poster or beamer projection. Eye movements are defined in units appropriate to the stimulus. The system compensates for head movements by tracking the corneal reflex. With the RED system the researcher obtains numerical gaze data in units of the calibration area, which can be automatically post-processed by other programs, e.g. for statistical analysis. The working range is limited to one flat panel with a strictly limited dimension. The test person cannot move freely and must sit or stand still during the experiment. Only small head movements are compensated. ## 7.4.1 Features and Benefits The RED system is a remote, non-invasive eye tracking system for gaze position tracking on a TFT monitor or projection screen. It excels in a very easy setup and usage, full automatic tracking and accurate recordings. | | RED | RED250 | RED500 | |---------------------------|---|-----------|-----------| | Setup | All-in-One product: Integrated with 22" monitor Standalone setup for TV or projections | | | | Technology | Non-invasive, video-based eye tracking dark-pupil tracking | | | | Eye tracking mode | binocular | binocular | binocular | | Sampling rate | 60Hz and
120Hz | 250Hz | 500Hz | | Calibration mode | 2 / 5 / 9 points | | | | Gaze position accuracy | <0.4° (typ) | | | | Spatial resolution (RMS) | 0.03° | | | | Operating distance | 60cm - 80cm (subject to eye tracking device) 23" - 32" (subject to eye tracking device) | | | | Tracking Range (head box) | 40cmx20cm at 70cm distance
16" x 8" at 28" distance | | | | Head Movement Velocity | 25cm/s | 25cm/s | 50cm/s | | (max) | | | | |------------------------------|------------------------------------|--------|--------| | System latency (end to end) | <17ms (60Hz) | <6ms | <4ms | | Processing latency | <0.5ms | <0.5ms | <0.5ms | | Blink recovery Time (max) | 16ms (60Hz) | 6ms | 4ms | | Tracking Recovery Time (max) | 135ms (60Hz) | 115ms | 90ms | | Gaze tracking range | 40° horizontal, 60° vertical | | | | Eyewear compatibility | works with most glasses and lenses | | | ## 7.4.2 Hardware Components The RED camera system is available in three versions: RED 1681, RED250 1681, RED500 1681 The eyetracking module uses an USB connection to the computer. Depending on the version of the RED the sampling rates 60, 120, 250 or 500 Hz are available. For safety reasons switch off all components before connecting or disconnecting cables! ### 7.4.2.1 ET module RED / RED250 / RED500 ### RED ET module The RED eye tracking module (ET module) observes the test persons eyes. It uses infrared LEDs to illuminate the eyes. Please also consider the <u>Safety Notes</u> 1831. #### Connectors at the rear side of the camera unit: Power must be connected with a 19 V power supply 1881. USB must be directly connected to the dedicated and labelled USB port of the iView X workstation. For the correct connection please also refer to the RED *System Setup Guide*. # 7.4.3 User Guide The RED can be combined with various stimulus presentation setups, in which the stimulus may be another computer monitor, a projector or TV. A stimulus program may run on the iView X workstation or on a second Stimulus PC, see Experimental Setup Examples [170]. iView X needs to be initialized to run with the RED. Usually, it will be done only once on installation, but just in case, it needs to be re-initialized, see Initialization of Software 177. In case you use SMI Experiment Center or another supported software to present the stimulus, you need to <u>establish an ethernet connection [60]</u> between the stimulus PC and the iView X workstation. Dependent on the way the stimulus is presented the RED has to be setup in the right mode of operation 174. The following guide describes the steps how to set up, calibrate and run an RED experiment, after the system has been wired properly. # 7.4.3.1 Experimental Setup Examples ## Two PC setup On the **Stimulus PC** a stimulus presentation software, such as *SMI Experiment Center*, must be installed. # Single PC setup with two monitors If the iView X Workstation is a Laptop, connect the RED monitor with the Laptop, then direct the monitor output to the RED monitor. ### 7.4.3.2 Initialization of Software Turn on the iView X workstation. Start iView X by double-clicking on the iView X icon. Next, iView X must be initialized to run with this configuration. Therefore, the iView X program must be told, which hardware components we use. Usually, it will be done only once on installation, but just in case, the software must be reinitialized, check the following: From the Setup [316] menu go to Hardware [317]. - Depending on the version you have, set *Eye Tracking Device* to one of the following devices: - RED 4 (FireWire) RED RED250 RED500. - Click on Advanced and choose the tracking mode or sample rate. - Click on OK to close the Setup Hardware dialog. Arrange docking windows. - Go to the View 367 menu and set a check mark to the following windows: Align all windows around the Scene Image Window as suggested below: A possible iView X RED window arrangement From the menu go to Setup [316] - Output Gaze Cursor Properties [357]. - If needed, enlarge the sizes of all cursors (left, right and calibration cursor) so that the targets can be comfortably look at. - Click on OK to close the window. The Scene Image has a context menu 173. # 7.4.3.2.1 Context Menu: RED Scene Image If you right-click on the RED scene image, a context menu pops up. # **Open Scene Image** Opens a file selection box, in which you can select a scene image. #### Stretch View Stretches the scene image so it best fits into the iView X workspace. ### Copy Scene Copies contents of scene image window to clipboard. ### **Show AOIs** Shows or hides any drawn AOIs 4081. # 7.4.3.3 Modes of Operation Dependent on the way the stimulus is presented RED can be used in three different modes of operation: | Stimulus presented on/via: | Mode of Operation: | |--------------------------------------|------------------------| | computer monitor | monitor integrated 174 | | television, poster, projector/beamer | stand alone 177 | # 7.4.3.3.1 RED Monitor Integrated In the *Monitor Integrated* operation mode the <u>ET module restaurant in ET module</u> is fixed with a screw on the adapter plate, which is located behind the monitor. The ET module is placed right underneath the monitor in a specified position. Both monitor and ET module work as a unit, thus, the height of the monitor cannot be changed. RED Monitor Integrated is used in cases, where the monitor is used as stimulus screen. The following steps describe how to set up and run a typical RED experiment: Setup Calibration 175 Test Person Placement 182 Run Experiment 183 # 7.4.3.3.1.1 Setup Calibration From the menu go to Setup 316 - Calibration 342. - Set Calibration Method to 5 Point RED. - Check Accept Points Automatically. - Check Audio Feedback on next point. - Check Wait for Valid Data. - Set Check Level to Medium. Calibration Settings for RED systems (lower part) - Go to the RED Operation Mode 349 tab. - Set Operation Mode to Monitor Integrated. - Select the size of the used stimulus monitor (19" or 22"). - You can change the calibration point positions, if you click on *Edit* (not available for 2-point calibration). - Set *Stimulus Screen Resolution* to the size of the bitmaps that will be presented. (Typical sizes are 1024x768, 1280x1024 or 1680x1050). The values will be stored in the iView X data file. Later analysis tools may use these values. - Click on OK to close the window. ### 7.4.3.3.2 RED Stand Alone To use the RED stand alone, the RED eyetracking module (ET module) can be mounted on a special stand alone foot. Unplug all cables before mounting the RED. The RED stand alone can be used in cases, where the stimulus area is a beamer projection screen, television screen or similar. The following steps describe how to set up and run an RED Stand Alone experiment: Experimental Setup 178 Set Calibration Points 180 Test Person Placement 182 Run Experiment 183 ### 7.4.3.3.2.1 Experimental Setup #### **RED Placement** The stand alone RED should be placed on a stable underground between the test person and the screen to watch. The RED should observe the test person's eyes from below, so the RED is inclined upwards. The RED may not cover the test person's field of vision. #### Screen The screen can be a monitor, a television screen, projection screen or similar. Note that - the screen has to be planar - the screen has to be at right angle with the floor - the screen's bottom line has to be parallel to the floor ##
Arrangement of components Arrange the RED eyetracking module and screen as shown below: Geometrical setup of a stand alone RED #### **RED to Screen Placement** - The RED ET module should always be horizontally centered to the screen. - The screen bottom line has to be aligned parallel to the RED. ### **Setup Calibration** From the menu go to Setup [316] - Calibration [342]. - Set Calibration Method to 5 Point RED. - Set Accept Points Automatically depending on the calibration point presentation. - Check Audio Feedback on next point. - Check Wait for Valid Data. - Set Check Level to Medium. #### **Profile** In the profile the geometrical setup dimensions are stored. In the Setup Calibration dialog go to the RED Operation Mode [349] tab. Select Stand Alone mode: Select a profile or create a new one by clicking on the *New* button. Measure the distances of your geometrical setup and fill in the appropriate fields in the dialog box. ### **Placement Suggestion** If you are not sure, where to put the RED, you can also use a *Placement Suggestion*. Check *Use Placement Suggestion.* Determine the eye height of the test persons and choose between the following options: - 80-110 cm: for test persons sitting comfortably on a couch or similar. - 110-140 cm: usual height for test persons setting at a desk. - 140-180 cm: for test persons who are standing during the experiment. Measure the stimulus screen dimension and distance, enter the values, then click on *Suggest RED Placement*. The required position of the RED is filled in automatically. Place your RED according to the suggestions. #### **Review Profile** To review if the profile fits, place an average test person in front of the RED and check if the eyes are in the middle of the tracking monitor, if this is not the case, correct the distance RED to floor and the RED inclination angle and correct the parameters in the profile. #### 7.4.3.3.2.2 Set Calibration Points If your stimulus is not presented through a <u>supported stimulus software [75]</u>, but is a poster or similar, you need to set the calibration points manually as follows: - 1. Define a calibration area 66 on the stimulus. - 2. Affix calibration markers either for 5- or 9-point calibration. Example for the position of the markers for a 9-point calibration: Instead of the numbers there should be distinctive targets, like dots or crosses, without the corresponding numbers. The calibration marker positions should roughly resemble this pattern in geometry. The exact distances between the points are not important. - 3. Take a digital photo of the stimulus. - Load the photo into a photo editor and cut the photo to the stimulus screen dimension. You might map one pixel to one unit of your screen dimension. - 5. Select the profile and click on the Points tab 350. - 6. Load the photo. The iView X calibration points will be overlaid over the photo. - 7. Move the overlaid calibration points by drag & drop to the marker positions. RED Tracking Monitor - 1. Place a test person in a comfortable position in front of the <u>RED ET Module</u> according to your experimental setup. - 2. If the eyes are tracked by the system, two white eye dots are visible in the RED Tracking Monitor. - 3. If tracking is lost the white dots have disappeared from the RED Tracking Monitor. - Arrows indicate the optimum position of the test person in front of the ET Module: - If the test person is too far away an arrow indicates that he or she should move closer: If the test person is too close an arrow indicates that he or she should increase the distance: Other arrows direct the test person to center his or her head in front of the ET Module. The test person is correctly placed if all arrows have vanished. A correct test person to ET Module distance should be between 60 and 80 cm. # 7.4.3.5 Run Experiment Now you are ready to run an experiment. ## **Data Recording** Data recording can be automatically controlled by the stimulus program or can be performed manually. The type of data recording depends on the way the stimulus is presented: | Stimulus Presentation using | Type of Data Recording: | |--|-----------------------------| | RED Monitor Integrated with supported stimulus program 75 | Automated Data Recording 75 | | RED Stand Alone with projector/
beamer, TV and supported
stimulus program 75 | Automated Data Recording 75 | | RED Stand Alone with poster | Manual Data Recording 77 | ### **Analysis** The result of the measurement is stored to an .idf file 285, see Analysis. [78] # 7.4.4 Safety Notes Switch off all components before connecting or disconnecting cables. When setting up the system, make sure that all connectors and switches are easily accessible. Periodically check the technical safety of the device, e.g., check for damage to the housing etc. Servicing, adjustment or repair works may only be carried out by a certified distributor or SensoMotoric Instruments GmbH (SMI). In case your iView X system or a component of the system is damaged, switch off the whole system and unplug it from the power source. Do not use the system until the system or its component has been repaired by a certified distributor or the manufacturer (SMI). Only use original components (cables, power supply etc.) from SMI. In case a component needs to be replaced, only replace it with original components from SMI. Do not repair the system by yourself. Electrical shock hazard. No part of the product may be modified or rebuilt. Any usage other then described in this manual is not permitted, can damage the device and eventually lead to associated risks such as short-circuit, fire, electric shock, etc. We do not assume liability for resultant damages to property or personal injury if the product has been abused in any way or damaged by improper use or failure to observe these operating instructions. In addition, any unauthorized modifications or repairs of the device will render the warranty null and void! # **Additional Power Supply Notes** Only use connecting cables provided by the manufacturer (SMI). Make sure the conductive earth wire is not broken, disconnected, removed or interrupted as this can pose a serious threat to life in the event of malfunction. The device must only be operated in dry, indoor spaces. Take precautions to make sure that the insulation of the entire product, the safety sockets, connected cables and mains cables are neither damaged nor destroyed. Always use fuses of the specified type and rating. It is impermissible to use repaired fuses! Never operate the device without supervision while loads are connected. Ensure to protect connected loads from the effects of operational disturbance as well as overvoltages. Do not use the power supply as a direct or indirect charging device. The device shall not be subjected to heavy mechanical stress. The device must not be exposed to extreme temperatures, direct sunlight, intense vibration or moisture. Position the device on a level and sturdy surface. The device generates operational heat. Never insert any objects, block cooler opening of the device, or hinder ventilation in any form or manner. The device is predominantly cooled by convection. Never put a naked flame or any containers with liquids on or near the apparatus. Caution! Capacitors within the device may retain their charge even if the device is disconnected from all power sources. Never turn on the device immediately after it has been brought from a cool into a warmer environment. Condensing water might destroy your device. Leave the device in OFF position and wait until it has reached ambient temperature. Before operating the device, make sure that your hands, shoes, clothing, the floor as well as the device itself are dry. During thunderstorm, unplug the device's power plug from the mains outlet in order to avoid damages due to excess voltage. In industrial facilities, the safety regulations laid down by the professional trade association for electrical equipment and facilities must be observed. In schools, training facilities, DIY and hobby workshops, the usage of electrical devices is to be supervised by trained personnel. If there is reason to believe that safe operation is no longer possible, the device is to be put out of operation and secured against unintended operation. Safe operation is no longer possible if: - -the device has sustained visible damages, - -the device no longer works, - -and the device was stored under unfavorable conditions for a long period of time, -the device was subject to considerable transport stress. This device is not a toy and should be kept out of reach of children! Should you have any questions that are not answered in this operating manual, please contact our technical customer service, or other experts. #### **LED** illumination To avoid unnecessary IR radiation for the eyes, switch off the system when not in use. The ET module uses invisible LED radiation Class 1. The used wavelength is 870 nm. Invisible LED radiation Class 1M may leak when camera housing is opened. Do not view directly with optical instruments when device is opened. ### Electromagnetic compliance WARNING: This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. ### Electrostatic sensitivity WARNING: All internal electronics are sensitive to high voltage or electrostatic discharge. The system can be destroyed if carelessly handled, so extreme care should be taken during set up and operation. # **Operating Temperature** The system is designed to operate satisfactorily in an environment where the ambient temperature is between 10 °C and 50 °C, and that there is no water condensation present. ### Storage Temperature Do not store the equipment in an area where the temperature will drop below -10 °C or exceed
80 °C. Do not allow moisture to condense on the system. ### Packaging for shipment When shipping, use the shipping cartons in which the units were originally delivered. Do not ship the equipment in a cargo area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ### Disposal Dispose the device according to legal regulations. ### 7.4.5 Maintenance Switch off the system before cleaning. Use a clean lint-free, antistatic, slightly moistened cloth to clean the device. Do not use abrasives, detergents or solvents. Make sure that the camera modules do not come into contact with liquids during cleaning. # 7.4.6 Technical Data # 7.4.6.1 Power Supply RED / RED250 / RED500 Operating Temperature : 0 ~ 50° C $\textbf{Dimension}: 119 \times 54 \times 36 \text{ mm}$ Approvals / Marks : c-UL, TÜV, CE, CB, PSE (15~30V models) #### **FEATURES** Universal range 90~264V AC / 47~63Hz / Power On LED Overload, Over Voltage & Short Circuit protection ### **OUTPUT** Model: SYS1183-6019 Voltage: 19V min. Load: 0A max. Load: 3.15A Tolerance: ±5% Ripple & N.: 1% Efficiency: 70% min. Max. Power: 60W #### INPUT Voltage 90 ~ 264V AC Frequency 47 ~ 63Hz Current 1.6A @ AC low line input and DC output full load Leakage Current < 0.25mA Surge Current 60A max. @ 230V AC and 25°C #### **PROTECTION** Overload OCP 150% ~ 200%, Fold back Over Voltage OVP 110% ~ 140%, Voltage limiting Short Circuit Yes, Output to Ground, Auto recovery when fault has been removed Short Current & Over Current can not exceed 8A max. after 1minute at nominal line input **No Load Operation** Yes , to protect the power supply and system from damage #### **OTHERS** **Holdup time** 10ms @ AC nominal Input and Output full load **Power On LED** Yes Cooling Free air convection Withstand Voltage HI-POT B / I/P-O/P (FG): 3KVAC / 10mA / 1 minute Power Consumption max. 1W @ AC nominal Input and Output min. load Input Fuse 250V AC / 1.6A ### **ENVIRONMENT** **Temperature** Operating: 0 ~ 50°C / Storage: -20 ~ 70°C **Humidity** Operating: 8% ~ 90% RH / Storage: 5% ~ 95% RH #### CONNECTION Input IEC320-C8 **Output** Plug: standard: 5.5 x 2.1 x 9.5mm (spring loaded center) / Cable: 180cm (6ft.) MTBF > 35K hours SAFETY TÜV EN60905 / CE / CB / PSE (15~30V models only) **EMC** EMI Meets: EN55022 Class B / EN50081-1 / EN50082-1 **EMS** EN60555-2,3 WEIGHT N.W.: 0.33 kg # 7.5 iView X Hi-Speed # iView X Hi-Speed The iView Hi-Speed system is an easy-to-use high speed eyetracker, which is available with the sampling rates: 240/350 Hz (version until 2005) and 500/1250 Hz (version since 2006). The camera and its IR illumination reside inside a stand-alone Tracking Column with an integrated ergonomic chin/forehead rest. The chin rest and forehead rest stabilizes the test person's head in front of the camera, thus, lacking the need for time-consuming camera adjustment or straining helmet/headband. The system is comfortable for the test person and stays accurate even over long time recordings. ### 7.5.1 Features and Benefits The iView X Hi-Speed system is a 1250 Hz hyper-accurate eye tracking system for scientific applications in research fields such as neurology, psychology, and reading where ultimate data quality is required. The Hi-Speed 1250 is a desktop system for lab use. # **Technology** - Non-invasive, video-based eye tracking - Monocular and binocular dark-pupil tracking, pupil/pupil-CR ### **Performance** | Sampling rate | 1250 Hz / 500 Hz monocular
500 Hz binocular | |------------------------|--| | Tracking resolution | < 0.01° (typ.) | | Gaze position accuracy | 0.25° - 0.5° (typ.) | | Processing latency | < 0.5 ms | | System latency | < 2 ms (typ.) | | Viewing angle | $\pm~30^{\circ}$ hor. / 30° (up), 45° (down) vert. | # System | • | Operating system | Windows XP | |---|------------------|--------------------| | • | Workstation | Desktop / Tower PC | #### Interface - Genuine SMI ergonomic design with Integrated camera adjustments - Height-adjustable chin rest (removable for SpeakAloud™ option) - Easy-to-clean parts - Head accessible for simultaneous use of recording and stimulation devices (e.g. EEG electrodes, magnetic coils) - SpeakAloud[™] option for out-loud reading with removed chin rest - BiteBar[™] option for superior head fixation ### **Auxiliary Devices / Communication** - Audio channel recording - Open communication interface via Ethernet (UDP) - Easy integration with third-party stimulus and analysis packages such as Presentation®, E-Prime®, Superlab™, MATLAB®, SPSS®, Excel™ and others - · Analog-Out, Digital IO Interface ### System Options - SMI Experiment Suite 360° (incl. BeGaze[™] & Experiment Center[™]) - Application Programming Interface (API) # **Approvals** CE, EMC, Eye Safety # 7.5.2 Hardware Components and Wiring The iView X Hi-Speed system mainly consists of an iView X workstation and a <u>Hi-Speed Tracking Column [194]</u>, which can be connected to a stimulus PC. For a wiring overview see Hi-Speed with Stimulus PC 2031. For a wiring overview for the use with non-human primates see Hi-Speed # Primate with Stimulus PC 222. For safety reasons switch off all components before connecting or disconnecting cables! # 7.5.2.1 Hi-Speed Tracking Column The Hi-Speed Tracking Column is an integrated module which consists of a built-in high speed camera and a comfortable fixture that keeps the test person's head still in front of the camera. Parts that are in direct connection with the test person have a blue colour: ### 7.5.2.1.1 Operational Controls **Power Switch:** Located at the right side of the <u>Tracking Column [194]</u>. The Tracking Column should be switched off if not in use. **Horizontal:** Knob at both sides of the Tracking Column, labelled *HORIZONTAL* (version dependent). Turn the knob to adjust the position of the camera horizontally. If <u>binocular[427]</u> mode is used, the camera has to be set to a central position. **Vertical:** At one side of the Tracking Column is a knob, labelled *VERTICAL* (version dependent), with which the tilt of the camera can be changed, and therewith the position of the eye relative to the camera will be adjusted vertically. **Eye Selection:** At the front of the Tracking Column the upper slider is used to select the eye. If monocular eye tracking is used, the slider should be set to left position. If <u>binocular [427]</u> eye tracking is used, move the slider to the right. **Focus:** At the front of the Tracking Column the lower slider is used to focus the camera. Carefully move the focus lever from left to right to focus. **Mirror tilt:** The mirror can be tilted (version dependent). As a standard setting the mirror should be set to the most upright or steepest position. To adjust the system for people wearing glasses tilt the mirror until possible reflections on the glasses do not disturb the tracking. **Chin rest adjustment:** The chin rest height can be adjusted with the wheel at the rear side of the Tracking Column. A scale at the front side should help to restore defined positions. See more details and a version dependent description in <u>Tracking Column</u> <u>Adjustment [21]</u>. ### 7.5.2.1.2 Cables and Connectors The <u>Tracking Column [194]</u> is connected with the iView X workstation via a CamLink and power supply cable, which has the following three ends: To assemble the system proceed as follows: - 1. Make sure that the power switch at the side of the Tracking Column is in off position. - At the top of the Tracking Column is a cover, which can be easily removed. To have a better access you can place the Tracking Column onto the floor before removing the cover. Press slightly at both ends of the cover to pull it off. - The camera power supply plug should be already connected (1) (version dependent). If not, gently plug it in. Avoid tearing at the thin cables. - 4. Connect the small power supply plug of the CamLink and power - supply cable (3) (version dependent). - 5. Plug in the CamLink connector (2) and additionally fasten it with the screws. - 6. At the other end of the *CamLink and power supply cable* connect the CamLink connector with the *Grablink* board at the back of the PC. - 7. Connect the power supply. #### Version until 2005: To attach the cable the CamLink connector (2) is to be pushed and screwed, the power supply connector (3) is screwed into the socket. #### Version since 2006: To attach the cable the CamLink connector (2) is to be pushed and screwed, the power supply connector (3) only needs to be pushed into the socket. #### 7.5.2.1.3 Mirror The mirror is coated on one side. Infrared light is reflected and visible light is transmitted. Its task is to redirect the infrared illuminated eye image to the high speed camera, which is situated in the upper part of the Tracking Column. # Mirror adjustment As a standard setting the mirror should be set to the most upright or steepest position. To adjust the system for people wearing glasses tilt the mirror until possible reflections on the glasses do not disturb the tracking. To center the eye image vertically afterwards use the adjustment knob labelled *VERTICAL*. With the screws on each side of the mirror holder you can loosen or fasten the mirror. ### Assembling If the mirror is to be dismounted, carefully loose the two plastic screws at the mirror holding and gently pull out the mirror, thereby avoid to touch the surface. The mirror has a sloped side at one corner. When the mirror is reassembled, the sloped side should be in the lower left corner of the aperture (looking from the test person's side). #### 7.5.2.1.4 Foot End A rubber mat and an angle bracket at the foot end provides a fixed stand. Additionally, the base plate contains mounting threads (M6) to firmly mount the device on a dedicated table. ### Location of the mounting threads (M6) in the base plate: # 7.5.2.2 Hi-Speed Wiring with Stimulus PC Required hardware components:
- · iView X workstation and monitor - Stimulus PC and monitor for stimulus presentation - local network or crosspatch cable for direct connection - Hi-Speed Tracking Column 194 - CamLink and power supply cable 199 - Grablink board 463 installed in the iView X workstation, which provides a CamLink interface #### Cabling Scheme: - The Hi-Speed Tracking Column is connected with the iView X workstation via a CamLink and power supply cable, which has three ends: - one end goes to the head part of the Tracking Column (see Cables and Connectors 199) for assembling) - one end is connected with the CamLink plug at the iView X workstation - one end is connected with the power supply - The iView X workstation and the Stimulus PC are connected via an ethernet connection. #### 7.5.3 User Guide The following guide describes the steps how to set up, calibrate and run an iView X Hi-Speed experiment, after the system has been wired [203] properly. ### 7.5.3.1 Experimental Setup In an experimental setup of iView Hi-Speed a <u>Hi-Speed Tracking Column</u> is placed in front of the test person. ### The Test Person Chair A chair should be selected that minimizes the amount of upper body movements made by the test person. Ideally, one lacking wheels and pivots is best. ### **Computer Placement** The area around the stimulus computer screen should be relatively free of distractions. A typical eye tracking setup places the stimulus and iView X monitors in a position where both are visible to the researcher, but only the stimulus monitor is visible to the test person. #### **Tracking Column Placement** The Tracking Column should be placed between the test person and the monitor on the edge of a table. The Tracking Column has a fixed stand without further assembling. #### **Optimum Operating Temperature** It is recommended to switch on the Hi-Speed Tracking Column about 20 minutes before performing any measurements, in order to allow the camera to reach its optimum operating temperature. #### Stimulus Monitor Placement The iView X Hi-Speed system can be used with most stimulus screens. Please consider the following suggestions when planning your physical setup: Place the stimulus screen at a distance, so that the viewing angle does not exceed \pm 20 degrees horizontally and \pm 15 degrees vertically, when the test person looks at the edges of the screen. Place the stimulus screen at a height, so that the test person looks at the center of the screen when looking straight ahead. #### 7.5.3.2 Initialization of Software Turn on the iView X workstation. Start iView X by double-clicking on the iView X icon. Next, iView X must be initialized to run with this configuration. Therefore, the iView X program must be told, which hardware components we use. Usually, it will be done only once on installation, but just in case, the software must be reinitialized, check the following: ## Licensing First, iView X must be licensed to use high speed. Click on Help [396] License Information [398] to see if high speed is currently licensed on your computer. If not, contact your vendor. If you purchased the high speed component, you have to add the component to the License Key. To do so, you have to terminate the old license and ask SMI to issue a new License Key. See also SMI Software License [31] for more information on the licensing process. #### **Hardware Setup** From the Setup [316] menu go to Hardware [317]. - Set Eye Tracking Device to Hi-Speed. If needed, establish an ethernet connection 601 between the stimulus PC and the iView X workstation. Click on OK to close the Setup Hardware dialog. ### **Calibration Setup** From the menu go to Setup [316] - Calibration [342], where you can choose between 5-point, 9-point and 13-point calibration: - 5-Point Linear: The 5-point calibration is useful if mapped gaze accuracy is not critical. The overall accuracy is a little bit lower than with the nine point calibration method. - *9-Point with Corner Correction:* The 9-point calibration uses an additional corner-correction algorithm. - 13-Point: The 13-point calibration adds additional fixation points for best accuracy. The following settings are recommended: - Set Calibration Method to 13 Point for highest accuracy. - Check *Accept Points Automatically* so the system will accept each calibration point after the test person fixates. - Check Audio Feedback on next point. - Check Randomize Point Order. Calibration points will be displayed in a random order to keep the test person from anticipating and looking ahead. - Check *Wait for Valid Data*. The system will only proceed with each calibration point after a valid fixation is detected. - Set *Check Level* to *Medium*. The stronger this is, the more strict the system will be in accepting calibration points and overall geometry. Calibration Settings for Hi-Speed systems (lower part) #### **Geometry Setup** - Go to the Geometry tab. - Set Stimulus Screen Resolution to a size that matches the resolution of the Stimulus PC. This will definite the resolution of the output data file. (Typical sizes are 1024x768 or 1280x1024.) - Enter *Stimulus Physical Dimension*, which is the dimension of the stimulus screen and the Monitor-Head-Distance. Both values will be stored in the iView file. Later analysis tools may use these values. - Click on OK to close the window. ## **Docking Windows** Arrange docking windows. - Go to the View 367 menu and set a check mark to the following windows: Align all windows around the Scene Image Window as suggested below: A possible iView X Hi-Speed window arrangement # **Overlay Options** From the menu go to Setup [316] - Output Gaze Cursor Properties [357]. - If needed, enlarge the sizes of all cursors (left, right and calibration cursor) so that the targets can be comfortably look at. - Click on OK to close the window. ## 7.5.3.2.1 Context Menu: Hi-Speed Scene Image If you right-click on the scene image, a context menu pops up. ## **Open Scene Image** Opens a file selection box, in which you can select a scene image. #### Stretch View Stretches the scene image so it best fits into the iView X workspace. #### Copy Scene Copies contents of scene image window to clipboard. #### Show AOIs Shows or hides any drawn AOIs 4081. ### 7.5.3.3 Tracking Column Adjustment The <u>Hi-Speed Tracking Column [194]</u> can be put on a table without any assembling. To optimize the test person's comfort a height adjustable table is recommended. #### Test Person Placement The test person sits in front of the Tracking Column and the monitor is placed behind the rear side. The test person should be relaxed and sitting in a comfortable position for using the chin rest. ### Chin rest adjustment and optimum eye height Have the test person rest his or her head in the chin-rest. The chin rest height can be adjusted with the wheel at the rear side of the Tracking Column. A scale at the front side should help to restore defined positions. Ideally the test person will be comfortably seated with his or her back straight, the forehead resting against the blue forehead rest, with no unnecessary tilt in the face and head. The optimum eye height is indicated by vitreous or transparent markers at either side of the aperture. The chin rest height should be adjusted until the eyes and the vitreous/transparent markers build a horizontal line. # Adjust Eye Video Adjust the Tracking Column in a way that the eye is to be seen in the eye control 372 display as follows: - Click in the Eye Control window to activate the eye tracker. The User message in the System Log should read "Grab started". - 2. Turn the upper slider on the adjustment panel to the left to select *monocular*, or to the right for *binocular* tracking. - 3. Turn the knob labelled HORIZONTAL, until the eye to be tracked is horizontally centered in the eye camera video. - 4. Move the lower slider on the adjustment panel to focus the eye. The focus is best if the corneal reflection is smallest. For more details on the Tracking Column controls and how to adjust the eye video see Adjustment Panel [213] - 5. As a standard setting the mirror should be set to the most upright or steepest position. To adjust the system for people wearing glasses tilt the mirror, until the reflections on the glasses disappear. - 6. Let the test person look at a center target of the stimulus display. Click on the *Auto Adjust* button to automatically adjust the image regarding pupil threshold and image balancing. - 7. Click on <u>Image Adjust</u> [379], then click on *Auto Balance* to let the eye tracker self-adjust brightness and contrast. The white cross-hair should be centered on the pupil. The black cross-hair should be centered on the corneal reflex (CR). If the eye tracker is not tracking the pupil or CR properly, consult the chapter Advanced Eye Image Adjustment. 402 8. Ask the test person to look at the four corners of the screen. Setup is complete if both crosshairs follow the pupil and cornea reflex during these eye movements. #### 7.5.3.3.1 Adjustment Panel #### Horizontal and vertical camera adjustment The camera can be adjusted horizontally and vertically. #### Horizontal With a knob at each side of the column, labelled *HORIZONTAL*, the position of the camera can be adjusted horizontally. If <u>binocular 427</u> mode is used, the camera has to be set to a central position. #### Vertical At one side of the Tracking Column is a knob, labelled *VERTICAL*, with which the tilt of the camera can be changed, and therewith the position of the eye relative to the camera will be adjusted vertically. # Adjustment Panel for Focus and Eye Selection #### Focus Moving the focus lever on the adjustment panel from left to right will focus the camera. #### Eye Selection If monocular eye tracking is used, the upper slider should be set to left position. If binocular 427 eye tracking is used, move the upper slider to the right. ### Switching between left eye, right eye and binocular If you switch
eye tracking between left eye, right eye or binocular, make sure that you set the <u>assignment of the eye [322]</u> accordingly. After this, the control elements of the column should be set as follows: #### Left eye Set the MONOC/BINOC slider to *left* position. Turn the HORIZONTAL knob until the left eye is visible in the <u>eye control</u> [373]. ### Right eye Set the MONOC/BINOC slider to *left* position. Turn the HORIZONTAL knob until the right eye is visible in the eye control [373]. #### Binocular Set the MONOC/BINOC slider to *right* position. Turn the HORIZONTAL knob to move the camera to a *central* position until both eyes are visible in the eye control [375]. ### 7.5.3.4 Run Experiment Now you are ready to run an experiment. #### **Data Recording** Data recording can be automatically controlled by the stimulus program or can be performed manually, see Automated Data Recording 75 Manual Data Recording 77 #### **Analysis** The result of the measurement is stored to an .idf file 285, see Analysis 781. # 7.5.4 Safety Notes Switch off all components before connecting or disconnecting cables. When setting up the system, make sure that all connectors and switches are easily accessible. Periodically check the technical safety of the device, e.g., check for damage to the housing etc. Servicing, adjustment or repair works may only be carried out by a certified distributor or SensoMotoric Instruments GmbH (SMI). In case your iView X system or a component of the system is damaged, switch off the whole system and unplug it from the power source. Do not use the system until the system or its component has been repaired by a certified distributor or the manufacturer (SMI). Only use original components (cables, power supply etc.) from SMI. In case a component needs to be replaced, only replace it with original components from SMI. Do not repair the system by yourself. Electrical shock hazard. No part of the product may be modified or rebuilt. Any usage other then described in this manual is not permitted, can damage the device and eventually lead to associated risks such as short-circuit, fire, electric shock, etc. We do not assume liability for resultant damages to property or personal injury if the product has been abused in any way or damaged by improper use or failure to observe these operating instructions. In addition, any unauthorized modifications or repairs of the device will render the warranty null and void! #### **Additional Power Supply Safety Notes** Only use connecting cables provided by the manufacturer (SMI). Make sure the conductive earth wire is not broken, disconnected, removed or interrupted as this can pose a serious threat to life in the event of malfunction. The device must only be operated in dry, indoor spaces. Take precautions to make sure that the insulation of the entire product, the safety sockets, connected cables and mains cables are neither damaged nor destroyed. Always use fuses of the specified type and rating. It is impermissible to use repaired fuses! Never operate the device without supervision while loads are connected. Ensure to protect connected loads from the effects of operational disturbance as well as overvoltages. Do not use the power supply as a direct or indirect charging device. The device shall not be subjected to heavy mechanical stress. The device must not be exposed to extreme temperatures, direct sunlight, intense vibration or moisture. Position the device on a level and sturdy surface. The device generates operational heat. Never insert any objects, block cooler opening of the device, or hinder ventilation in any form or manner. The device is predominantly cooled by convection. Never put a naked flame or any containers with liquids on or near the apparatus. Caution! Capacitors within the device may retain their charge even if the device is disconnected from all power sources. Never turn on the device immediately after it has been brought from a cool into a warmer environment. Condensing water might destroy your device. Leave the device in OFF position and wait until it has reached ambient temperature. Before operating the device, make sure that your hands, shoes, clothing, the floor as well as the device itself are dry. During thunderstorm, unplug the device's power plug from the mains outlet in order to avoid damages due to excess voltage. In industrial facilities, the safety regulations laid down by the professional trade association for electrical equipment and facilities must be observed. In schools, training facilities, DIY and hobby workshops, the usage of electrical devices is to be supervised by trained personnel. If there is reason to believe that safe operation is no longer possible, the device is to be put out of operation and secured against unintended operation. Safe operation is no longer possible if: - -the device has sustained visible damages, - -the device no longer works, - -and the device was stored under unfavorable conditions for a long period of time, - -the device was subject to considerable transport stress. This device is not a toy and should be kept out of reach of children! Should you have any questions that are not answered in this operating manual, please contact our technical customer service, or other experts. #### LED illumination To avoid unnecessary IR radiation for the eyes, switch off the system when not in use. The Hi-Speed camera system uses invisible LED radiation Class 1. The used wavelength is 910 nm. #### Electromagnetic compliance WARNING: This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. #### Electrostatic sensitivity WARNING: All internal electronics are sensitive to high voltage or electrostatic discharge. The system can be destroyed if carelessly handled, so extreme care should be taken during set up and operation. #### **Operating Temperature** The system is designed to operate satisfactorily in an environment where the ambient temperature is between 10 °C and 50 °C, and that there is no water condensation present. #### Storage Temperature Do not store the equipment in an area where the temperature will drop below -10 $^{\circ}$ C or exceed 80 $^{\circ}$ C. Do not allow moisture to condense on the system. ## Packaging for shipment When shipping, use the shipping cartons in which the units were originally delivered. Do not ship the equipment in a cargo area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ## Disposal Dispose the device according to legal regulations. #### 7.5.5 Maintenance Switch off the system and the Tracking Column 194 before cleaning. The test person will be in direct contact with the forehead rest, chin rest and hand rest of the Tracking Column (blue parts). Therefore, these parts should be cleaned regularly. Use a soft cloth lightly moistened or pads dampened with disinfectant fluids on isopropanol base. Do not use spirit for cleaning. The camera lenses and the infrared mirror should be carefully cleaned by using a soft cloth or special lens paper. Avoid touching the glass surface of the lenses with your hands. Use a clean lint-free, antistatic, slightly moistened cloth to clean all other parts. Do not use abrasives, detergents or solvents. Make sure that the camera modules do not come into contact with liquids during cleaning. # 7.5.6 Technical Data # 7.5.6.1 Tracking Column Power Supply ### **Characteristics** Universal input 100 - 240 V AC Interchangeable primary adapters Constant voltage, current limited Green LED indicating power on Low leakage current < 10 µA Low standby power ≤ 0.5 Watt #### Technical data Input voltage 100 V AC - 240 V AC Input current 0.7 A Frequency 50 - 60 Hz Efficiency 80% typ. at full load EMC norm Conforms to FCC, CISPR 22, EN 55022, class B, IEC 61000-4-3, IEC 61000-4-6 Output voltage tolerance ± 10% ### **Environmental specification** Operating temp. 0 °C to 40 °C at maximum load Storage temp. -40 °C to 70 °C Humidity 5% to 95% non condensing Input Transient Susceptibility Complies with IEC 61000 requirements # Safety specification **Standards** Fulfills Class II SELV for the following applications: IEC 60601-1, UL 2601, VDE, CE label, fulfills medical application class B /BF /CF ## Reliability specification MTBF calculation 200,000 hours at maximum load levels and an ambient temperature of 25 °C (in correspondence with MIL-HDBK-217) ### Mechanical specification Weight 278 g **Plug connector** AC input: FRIWO exchangeable mains plug system: EURO, UK, USA /Japan, Australia, ROW #### World exclusive **Medical** 100 - 240 V input voltage power supplies without earthing, leakage current < 10 μ A ### **Output data** Voltage 12 V Current 2500 mA Ripple volt. 100 mV pp # 7.6 iView X Hi-Speed Primate The iView Hi-Speed Primate system offers a solution for eye tracking on non-human primates. The system is easy to set up and involves as little extra training of the subject as possible. While being completely non-invasive through its video-based eye tracking method the iView Hi-Speed Primate system provides direct analog calibration and a robust, precise analog voltage output similar to scleral search coil (SSC) systems. # 7.6.1 Hardware Components and Wiring Required hardware components: - iView X workstation and monitor - Stimulus PC and monitor for stimulus presentation - local network or crosspatch cable for direct connection - Hi-Speed Primate camera 224 box with CamLink cable - Grablink board 463 installed in the iView X workstation For safety reasons switch off all components before connecting or disconnecting cables! ### 7.6.1.1 Primate Camera The Hi-Speed Primate camera system consists of - a <u>Hi-Speed Primate camera box 225</u> with a CamLink cable (see <u>wiring 227</u>) - and a 12 V power supply 238 Additional required components for the iView X
workstation: - a Grablink board 463 - a <u>DA card digital IO/analog out [470]</u> with a break-out cable for <u>direct analog calibration</u> [403]. #### 7.6.1.1.1 Camera Box The camera inside the box is a Hi-Speed binocular camera with two illumination LEDs. The focus can be adjusted with the focus adjustment lever beneath the camera. The camera box has mounting threads at both sides. The thread in the middle is a standard tripod thread (1/4-20 UNC-2B). The other threads are M6 threads. At the rear side of the camera box you can find: - Power switch of camera box - LED power switch, switches only illumination LEDs - 12 DC IN connector - CamLink cable # 7.6.1.1.2 Wiring Before connecting the system make sure that the power switch at the rear side of the camera box is in OFF position. Connect 12 V power supply with the 12 DC IN connector. Connect the other end of the CamLink cable with the CamLink interface plug (Grablink 463) board) at the iView X workstation. ### 7.6.2 User Guide The following guide describes the steps how to set up, calibrate and run an iView X Hi-Speed Primate experiment, after the system has been wired properly. ### 7.6.2.1 Initialization of Software Turn on the iView X workstation. Start iView X by double-clicking on the iView X icon. Next, iView X must be initialized to run with this configuration. Therefore, the iView X program must be told, which hardware components we use. Usually, it will be done only once on installation, but just in case, the software must be reinitialized, check the following: From the Setup [316] menu go to Hardware [317]. - Set Eye Tracking Device to Hi-Speed Primate. - Click on Advanced. - Select the Tracking Mode. - Select the Corneal Reflex 320 tab. - If head movements are possible, CR tracking can offer compensation. Then you can choose the number of reflexes and which to use: left or right CR or average of both. - Click on OK to close the Advanced dialog. - Click on OK to close the Setup Hardware dialog. Activate eye camera by clicking on the Eye Control 375]. Arrange docking windows (if needed). Therefore you can go to the View set menu to check/unckeck views. From the menu go to Setup 316 - Calibration 342. - Select 'Direct Analog (Gain & Offset)'. Note: This calibration method is only visible if iView X has been configured with the <u>Analog Out option [483]</u>. Click on OK to close the window. From the menu go to Setup 316 - Output Gaze Cursor Properties 357. - If needed, enlarge the sizes of all cursors (left, right and calibration cursor) so that the targets can be comfortably look at. - Click on OK to close the window. ### 7.6.2.2 Adjust Eye Video Place the subject in a comfortable position in front of the Stimulus PC monitor. On the iView X PC look at the Eye Control 372. Eye image for monocular tracking with two CRs Depending on if you selected monocular or binocular tracking you will see one of the following - Eve Control for Monocular Eve Tracking 373 - Eye Control for Binocular Eye Tracking 375 #### **Focus Adjustment** Adjust the focus with the focus adjustment lever at the bottom side of the camera #### **Thresholds** Here the detection thresholds for pupil and corneal reflex (CR), if available, can be set. Move the pupil slider until a white cross-hair is visible in the eye control. The center of the cross-hair should be the center of the pupil. In case CRs are used, move the CR threshold slider until the black crosshairs are visible in the eye control. The centers of the cross-hairs should be centered on the corneal reflexes near the center of the pupil. *Dynamic Threshold*: If checked, the eyetracker automatically adapts the pupil threshold to slightly changing environments like small movements of the head, changing of light etc. ## **Image Adjust** Here you can adjust brightness and contrast 379 of the eye image. ## **Auto Adjust** If you click on the *Auto Adjust* button the image is adjusted regarding pupil threshold and <u>image balancing</u> [379] #### **Tracking** If the eye tracker has difficulties to track the pupil or CR, you can change the <u>tracking parameters</u> 380. See also chapter <u>Advanced Eye Image</u> <u>Adjustment</u> 402. ### 7.6.2.3 Run Experiment #### Calibration Perform an Analog Gain/Offset Calibration 403. After the calibration process analog out voltages that correspond to the pupil and gaze positions are immediately available. ### **Data Recording** In case additionally gaze and pupil positions need to be recorded to a file, see Manual Data Recording 777 on how to start, stop recording and save data. ## 7.6.3 Safety Notes Switch off all components before connecting or disconnecting cables. When setting up the system, make sure that all connectors and switches are easily accessible. Periodically check the technical safety of the device, e.g., check for damage to the housing etc. Servicing, adjustment or repair works may only be carried out by a certified distributor or SensoMotoric Instruments GmbH (SMI). In case your iView X system or a component of the system is damaged, switch off the whole system and unplug it from the power source. Do not use the system until the system or its component has been repaired by a certified distributor or the manufacturer (SMI). Only use original components (cables, power supply etc.) from SMI. In case a component needs to be replaced, only replace it with original components from SMI. Do not repair the system by yourself. Electrical shock hazard. No part of the product may be modified or rebuilt. Any usage other then described in this manual is not permitted, can damage the device and eventually lead to associated risks such as short-circuit, fire, electric shock, etc. We do not assume liability for resultant damages to property or personal injury if the product has been abused in any way or damaged by improper use or failure to observe these operating instructions. In addition, any unauthorized modifications or repairs of the device will render the warranty null and void! ### **Additional Power Supply Safety Notes** Only use connecting cables provided by the manufacturer (SMI). Make sure the conductive earth wire is not broken, disconnected, removed or interrupted as this can pose a serious threat to life in the event of malfunction. The device must only be operated in dry, indoor spaces. Take precautions to make sure that the insulation of the entire product, the safety sockets, connected cables and mains cables are neither damaged nor destroyed. Always use fuses of the specified type and rating. It is impermissible to use repaired fuses! Never operate the device without supervision while loads are connected. Ensure to protect connected loads from the effects of operational disturbance as well as overvoltages. Do not use the power supply as a direct or indirect charging device. The device shall not be subjected to heavy mechanical stress. The device must not be exposed to extreme temperatures, direct sunlight, intense vibration or moisture. Position the device on a level and sturdy surface. The device generates operational heat. Never insert any objects, block cooler opening of the device, or hinder ventilation in any form or manner. The device is predominantly cooled by convection. Never put a naked flame or any containers with liquids on or near the apparatus. Caution! Capacitors within the device may retain their charge even if the device is disconnected from all power sources. Never turn on the device immediately after it has been brought from a cool into a warmer environment. Condensing water might destroy your device. Leave the device in OFF position and wait until it has reached ambient temperature. Before operating the device, make sure that your hands, shoes, clothing, the floor as well as the device itself are dry. During thunderstorm, unplug the device's power plug from the mains outlet in order to avoid damages due to excess voltage. In industrial facilities, the safety regulations laid down by the professional trade association for electrical equipment and facilities must be observed. In schools, training facilities, DIY and hobby workshops, the usage of electrical devices is to be supervised by trained personnel. If there is reason to believe that safe operation is no longer possible, the device is to be put out of operation and secured against unintended operation. Safe operation is no longer possible if: - -the device has sustained visible damages, - -the device no longer works, - -and the device was stored under unfavorable conditions for a long period of time, - -the device was subject to considerable transport stress. This device is not a toy and should be kept out of reach of children! Should you have any questions that are not answered in this operating manual, please contact our technical customer service, or other experts. #### LFD illumination To avoid unnecessary IR radiation for the eyes, switch off the system when not in use. The Hi-Speed camera system uses invisible LED radiation Class 1. The used wavelength is 910 nm. #### Electromagnetic compliance WARNING: This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. #### Electrostatic sensitivity WARNING: All internal electronics are sensitive to high voltage or electrostatic discharge. The system can be destroyed if carelessly handled, so extreme care should be taken during set up and operation. ### **Operating Temperature** The system is designed to operate satisfactorily in an environment where the ambient temperature is between 10 °C and 50 °C, and that there is no water condensation present. ## Storage Temperature Do not store the equipment in an area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ### Packaging for shipment When shipping, use the shipping cartons in which the units were
originally delivered. Do not ship the equipment in a cargo area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ### Disposal Dispose the device according to legal regulations. #### 7.6.4 Maintenance Switch off the system before cleaning. To clean the device use a soft cloth lightly moistened or pads dampened with disinfectant fluids on isopropanol base. Do not use spirit for cleaning. Do not use abrasives, detergents or solvents. # 7.6.5 Technical Data # 7.6.5.1 Hi-Speed Primate Power Supply ### **Characteristics** Universal input 100 - 240 V AC Interchangeable primary adapters Constant voltage, current limited Green LED indicating power on Low leakage current < 10 μ A Low standby power \leq 0.5 Watt #### **Technical data** Input voltage 100 V AC - 240 V AC Input current 0.7 A Frequency 50 - 60 Hz Efficiency 80% typ. at full load EMC norm Conforms to FCC, CISPR 22, EN 55022, class B, IEC 61000-4-3, IEC 61000□4□6 Output voltage tolerance ± 10% ### **Environmental specification** Operating temp. 0 °C to 40 °C at maximum load Storage temp. -40 °C to 70 °C Humidity 5% to 95% non condensing Input Transient Susceptibility Complies with IEC 61000 requirements # Safety specification **Standards** Fulfills Class II SELV for the following applications: IEC 60601-1, UL 2601, VDE, CE label, fulfills medical application class B /BF /CF ### Reliability specification MTBF calculation 200,000 hours at maximum load levels and an ambient temperature of 25 °C (in correspondence with MIL-HDBK-217) # **Mechanical specification** Weight 278 g Plug connector AC input: FRIWO exchangeable mains plug system: EURO, UK, USA /Japan, Australia, ROW ### World exclusive **Medical** 100 - 240 V input voltage **power supplies** without earthing, leakage current < 10 μA ### **Output data** Voltage 12 V Current 2500 mA Ripple volt. 100 mV pp # 7.7 iView X MRI #### iView X MRI iView X MRI is an eyetracking system designed for the use with magnetic resonance imaging (MRI). #### MRI-LR (Long Range) The LR system consists of a long-range, tripod-mounted camera that is placed in the magnet room. A mirror box is mounted on the coil to reflect stimulus to the test person and the eye image to the camera. The eye is illuminated via an IR light source in the mirror box. The captured eye video is converted to fiber optic and sent to the control room where it is processed by an iView X eye tracking system. See also MRI-LR: Features 242. #### MRI-SV (Silent Vision) The SV system is used in conjunction with the Avotec Silent Vision™ system. Avotec is a separate company that manufactures auditory and visual stimulus equipment for MRI and fMRI testing. SMI provides an eye tracking system for use in conjunction with Avotec's fiber-optic based visual presentation device. The eye image is captured and transmitted via a fiber optic add-on to the display device. The image is transferred to a projector and converted to a video signal. This signal is processed by an iView X eye tracking system in the control room The iView X compensates for small head movements by tracking and averaging two cornea reflex points that reflect the IR illumination provided by the Silent Vision goggles. In a Silent Vision setup, display and eye capture components of the system are provided and supported by AvotecTM. Only the eye tracking computer itself is an SMI component. See www.avotec.org for more information. See also MRI Silent Vision: Features 242. ### 7.7.1 MRI-LR: Features #### **Technology** · Recording unit only #### Performance | • | Sampling rate | 50 / 60 Hz | |---|---------------|------------| | | | | Gaze position accuracy typ. 3° • Viewing angle \pm 15-20° hor. / \pm 10-15° vert. (typ.) ### System Operating system Windows XP Dedicated workstation #### Interface Power Supply (control room) 110 - 230 V AC ### **Approvals** • CE, EMC, Eye Safety ### 7.7.2 MRI Silent Vision: Features ### **Technology** - Non-invasive, video-based eye tracking - Monocular; Pupil/Pupil-CR; dark-pupil #### **Performance** • Sampling rate 50 / 60 Hz • Tracking resolution < 0.1° (typ.) • Gaze position accuracy 0.5° - 1° (typ.) • Viewing angle \pm 15° hor. $/ \pm$ 10° vert. (typ.) ### System Operating system Windows XP · Dedicated workstation #### Interface Dimensions Eye Camera (HxWxD) 80 x 500 x 120 mm Mirror Box customized to head coil • Power Supply (magnet room) 110 - 230 V AC Optional: Rechargeable battery Various scanners and head coils are supported. (Contact SMI for more information.) ### **Approvals** • CE, EMC, Eye Safety #### 7.7.3 General Considerations The setup of the iView X system depends on the interface and type of stimulus used. Some general suggestions are as follows: #### Light changes Because it tends to be dark in the magnet, special care must be taken to avoid changes in brightness of the stimulus during the test. A large change in pupil size can cause inaccuracies, particularly between the calibration screen and the test. If brightness changes are inevitable, consider recentering or recalibrating often. #### Eye image A large, focused eye image will help tracking accuracy and spatial resolution. When using the MRI-SV (Silent Vision) system, the eye image will be optimized if the test person has a clear view of the stimulus. In the MRI-LR setup, zooming in close on the eye and carefully focusing will improve results. ### **Calibration points** If the test person has trouble seeing calibration points near the edge of the screen, accuracy will be seriously reduced. In this case, consider locating calibration points in more central locations than usual. The calibration points should not be much farther from the center than the stimulus data itself. However, do not draw the points in too far, as this will increase noise in the eye movement data. #### Maximize stimulus display size The accuracy of any eye tracker can be expressed as an angle but this is not affected by the size of the stimulus display. Therefore, results will generally improve if the display size is larger. For example, if a system is accurate to within 0.8 degrees, this "uncertainty" in gaze position will represent a much larger portion of a 10-degree wide stimulus than a 20-degree wide one. #### Data mirroring Horizontal and vertical mirroring can be set to compensate for the mirroring of the eye. Some experimentation might be required to determine the correct configuration. If you receive "subject looked in wrong horizontal/vertical direction" errors during calibration even if the test person is looking in the correct direction, it is likely that mirroring is set incorrectly for your device. #### 7.7.4 MRI-LR iView X MRI-LR is a device to measure eye movements and pupil diameter of test persons in a magnetic resonance imaging (MRI) scanner. It can also be used to monitor eye movement. See also Safety Notes 2641 and Maintenance 2691. Video images are recorded by a highly sensitive, high resolution infrared camera, which resides inside of the camera box. The eye of the test person is illuminated with infrared light by a special LED. The camera is directed at the eye of the test person through a mirror in the mirror-box and records the reflection of the IR light. The image information is sent through an optical fiber cable to the iView X workstation. An additional mirror is located inside of the mirror-box, on which the test person may see an optional stimulus presentation. ### 7.7.4.1 Modes of Operation The MRI-LR system consists of a mirror-box mounted on a head coil, a camera box on a camera mount and an eye control monitor. Two modes of operation are possible: ### A) camera box at the foot end of the patient table If the stimulus presentation screen is located at the top end of the patient table, the camera box should be mounted at the foot end. In this case the camera box will be mounted on a custom-built table platform, or in some cases on a tripod at the patient bed. #### B) camera box at the top end of the patient table If the stimulus presentation screen is located at the foot end of the patient table, the camera box will be mounted on a wheeled tripod and placed at the head of the scanner. # 7.7.4.2 System Installation Install the MRI components by following the steps: - Mount the Mirror-Box 247 on the head coil. - Mount and Connect the Illumination Unit 249 to the head coil. - Setup and connect the Camera Box 251. - Setup and connect the Eye Control Monitor 251. - Adjust the Camera 252 to the test person's eye. # 7.7.4.2.1 Mounting the Mirror-Box Two opposing mirrors are installed inside the mirror box. One is a transparent, IR reflecting mirror for the eye tracker, the other is a silvered mirror for stimulus presentation. To mount the mirror box on the head coil, loose the four knurled screws that connects the upper part of the mirror box with the two adapters at each side. With the loosened adapters the mirror box can be easily placed on the head coil. Note the correct alignment of the mirror box according to labels. The reflecting side of the silvered mirror should be directed towards the stimulus presentation screen. Fasten the upper four knurled screws. Move the mirror box until its aperture roughly lies above the assumed test person's eyes. Fasten the mirror box with the two lower knurled screws. ### 7.7.4.2.2 Mounting and Connecting the Illumination Unit Insert the wand containing the illumination LED into the designated holder of the mirror-box. If the mirror box has two holders, place the wand in the holder above the eye to be tracked. The light emitting aperture of the wand should be directed downwards. The illumination unit can be adjusted later by using the eye control monitor. Plug the illumination power supply into an outlet. Contact your safety inspector of the MRI scanner for potential further precautions. See also <u>Safety Notes</u> 264. #### 7.7.4.2.3 Connectors and Switches ###
Connectors of the MRI Camera Box: **Power** must be connected with the power supply 259. Video Out Eye Tracker must be connected with the eye tracker workstation. TFT Monitor must be connected with eth eye control monitor #### **Power Switch** The camera box can be switched on/off. See also Safety Notes 264 and Maintenance 269. #### 7.7.4.2.4 Setup and Connecting the Camera Box Always keep the camera box away from the scanner! Never bring the camera box into the bore! See also Additional Safety Notes 264. If the camera box stands at the head of the MRI scanner bed, place it behind the magnet. Once in place, deploy the small non-slip feet by pressing on the grey levers. Insert the plug of the power supply for the camera box into the connector labelled 'Power' at the rear side of the camera box. Connect the other end of the power supply with a power supply socket in the MRI operating room. Connect the fiber optic cable with the connector labelled *EYE TRACKER* at the rear side of the camera box. The other end of the cable goes to the control room and must be connected with the fiber optic receiver on the iView X workstation. Conduct all cables along the axis of the MRI scanner, if possible. ### 7.7.4.2.5 Setup and Connecting the Eye Control Monitor Always keep the eye control monitor away from the scanner! Never bring the eye control monitor into the bore! See also Additional Safety Notes 264. Put the eye control monitor with its tripod at an appropriate place, so that the image is visible from a position near the camera box. Note that the eye control monitor should maintain a distance of at least one meter from the MRI scanner, or the screen image may be distorted by the magnetic field. Connect the monitor to the camera box. Set the switch labelled \emph{VIDEO} \emph{OUT} at the rear side of the camera box to the $\emph{MONITOR}$ position. Make sure that the monitor is switched on. An image should now be seen on the display. #### 7.7.4.2.6 Camera Adjustment Use the pan, tilt and height controls on the camera mount to aim the camera at the mirror in the mirror box. Place the test person on the MRI scanner bed with his or her head in the head coil. Place the eye control monitor at a position so that it is visible from a position near the head coil. Move the mirror-box until the center between both mirrors lies more or less above the bridge of the test person's nose. To do that, you need to loose and fasten the lower knurled screws, see also Mounting the Mirror Box 247). Adjust the transparent eye mirror until the test person's eye is vertically centered on the visual display. Use the adjustment controls on the camera mount to center the eye on the eye control screen. Rotate the illumination wand until the eye image on the display is evenly illuminated. The wand can be stabilized with nylon screws, if necessary. The focal length can be changed by moving the zoom ring of the camera along the axis. The focus can be changed by turning the zoom ring. Use the camera zoom to magnify the eye image, until the eye is as large as possible without leaving the camera view at different eye positions. Tilt the silvered mirror, until the projector image is visible to the test person. For front-projection systems, the eye control monitor can now be moved back to the camera side of the magnet. Move the test person into the MRI scanner. Once satisfied with the eye image, set the switch labelled *MONITOR* to the *EYE TRACKER* position. Make sure that the eye control monitor is switched off. If it is a small monitor (without own power supply) it will be switched off automatically. Additionally, you might remove the eye control monitor from the magnet room. # 7.7.4.3 Operating Procedure The following steps describe how to set up and run a typical iView MRI experiment, after the MRI system has been properly installed [247]. #### 7.7.4.3.1 Initialization of Software Turn on the iView X workstation. Start iView X by double-clicking on the iView X icon. Next, iView X must be initialized to run with this configuration. Therefore, the iView X program must be told, which hardware components we use. Usually, it will be done only once on installation, but just in case, the software must be reinitialized, check the following: #### **Setup Hardware** From the Setup [316] menu go to Hardware [317]. - Set Eye Tracking Device to MRI-LR. - Click on the Advanced button. - Choose, if left or right eye will be tracked and recorded. - Set in *Video Input*, which connection the eye camera uses. Set here, if the eye camera is PAL or NTSC. ### Data mirroring - Choose the Mirroring tab. Check the mirroring options as follows: If the Camera Box stands at the top end of the patient table, data is usually horizontally mirrored. - If the Camera Box stands at the **foot end** of the patient table, data is usually **vertically** mirrored. - Which mirroring applies depends on your experimental setup. - Click on OK to close the Advanced dialog. #### Connect to Stimulus PC Establish an ethernet connection 60 between the stimulus PC and the iView X workstation. - Click on OK to close the Setup Hardware dialog. ### **Activate Eye Camera** Activate eye camera by clicking on the Eve Control 373. ### **Setup Calibration** From the menu go to Setup 316 - Calibration 342. - Set Calibration Method to 9 Point with corner correction. Calibration Settings for MRI systems (upper part) - Check Accept Points Automatically. - Check Audio Feedback on next point. - Check Wait for Valid Data. - Set Check Level to Medium. Calibration Settings for MRI systems (lower part) - Go to the Geometry tab. - Set Stimulus Screen Resolution to the size of the bitmaps that will be presented. (Typical sizes are 1024x768 or 1280x1024.) - Enter *Stimulus Physical Dimension*, which is the dimension of the stimulus screen and the Monitor-Head-Distance. Both values will be stored in the iView file. Later analysis tools may use these values. - Click on OK to close the window. From the menu go to Setup 316 - Output Gaze Cursor Properties 357. - If needed, enlarge the sizes of all cursors (left, right and calibration cursor) so that the targets can be comfortably look at. - Click on OK to close the window. ### 7.7.4.3.2 Adjust Eye Video If everything was <u>installed</u> correctly you should see a proper eye video image in the <u>Eye Control</u> [373]. ### 7.7.4.3.3 Run Experiment Now you are ready to run an experiment. ### **Data Recording** Data recording can be automatically controlled by the stimulus program or can be performed manually, see Automated Data Recording 75 Manual Data Recording 77 If you receive "subject looked in wrong horizontal/vertical direction" errors during calibration even if the test person is looking in the correct direction, it is likely that mirroring [256] is set incorrectly. ### **Analysis** The result of the measurement is an <u>.idf file</u> [285], see <u>Analysis</u> [78]. ### 7.7.4.4 Power Supply The MRI Camera Box is connected to a 12 V power supply. See also Safety Notes 264 and Technical Data 260. #### 7.7.4.4.1 Technical Data ### **Characteristics** Universal input 100 - 240 V AC Interchangeable primary adapters Constant voltage, current limited Green LED indicating power on Low leakage current < 10 μ A Low standby power \leq 0.5 Watt #### **Technical data** Input voltage 100 V AC - 240 V AC Input current 0.4 A Frequency 50 - 60 Hz Efficiency 80% typ. at full load EMC norm Conforms to FCC, CISPR 22, EN 55022, class B, IEC 61000-4-3; IEC 61000-4-6 Output voltage tolerance ± 10% # **Environmental specification** Operating temp. 0 °C to 40 °C at maximum load Storage temp. -40 °C to 70 °C Humidity 5% to 95% non condensing Input Transient Susceptibility Complies with IEC 61000 requirements ### Safety specification **Standards** Fulfills Class II SELV for the following applications: IEC 60601-1, UL 2601, VDE, CE label, fulfills medical application class B /BF /CF ### Reliability specification MTBF calculation 200,000 hours at maximum load levels and an ambient temperature of 25 °C (in correspondence with MIL-HDBK-217) # Mechanical specification Weight 130 g Plug connector AC input: FRIWO exchangeable mains plug system: EURO, UK, USA /Japan, Australia, ROW #### World exclusive **Medical** 100 - 240 V input voltage **power supplies** without earthing, leakage current < 10 μA #### Output data Voltage 12 V Current 1250 mA Ripple volt. 120 mV pp ### 7.7.5 MRI Silent Vision The following steps describe how to set up and run a typical iView Silent Vision Experiment. ### 7.7.5.1 Experiment Setup - Turn on all Avotec equipment so that a video signal is received by the Real Eye box in the control room. A video signal should be visible on the small LCD screen on this box. - Turn illumination on the box up until it is at least ¾ from the highest level. - 3. On the iView X workstation, double-click on the iView X icon to start the iView X application. - 4. Setup the test person according to instructions provided by Avotec[™]. Usually, if the test person has a good view of the screen, their eye will be easily tracked by the system. The eye should now be visible on the Real Eye box in the control room. # 7.7.5.2 Software Setup - Click in the Eye Control window over the eye image to activate the eye tracker. The Eye Tracker must be enabled to perform all eye tracking functions. - 2. Check DYNAMIC THRESHOLD. This will allow the system to automatically adjust pupil threshold level based on eye image brightness and contrast. - 3. On the eye tracker, Click on the Tracking button. - 4. Under the AOI tab, manipulate the Y-MIN, Y-MAY, X-MIN, and X-MAX controls to frame the eye in the white box in the camera view. This defines the working range of the eye tracker and will allow you to mask out regions of the video image that might look like pupil or CR to the system. The box should be large enough that all likely eye movements keep the pupil entirely within the box. - 5. Close the
Tracking dialog box by clicking OK. - 6. Choose Setup Hardware 317 and click on Advanced. - 7. Click on the CORNEAL REFLEX tab. Verify that the Reflex Number is set to 2 and Reflex Usage is set to AVERAGE. - 8. Click OK to exit the Advanced dialog. - 9. Move the CR Threshold slider so that the two CR cross-hairs are visible in the video image along with the pupil cross-hair. # 7.7.5.3 Calibration Setup - 1. Set your calibration options by selecting the <u>Setup Calibration [342]</u> from the menu. - 2. Choose a calibration of 800X600, which is the set resolution of the Avotec display. - 3. Choose the 8-point calibration method. - 4. Check ACCEPT POINTS AUTOMATICALLY so the system will accept each calibration point after the test person fixates. - 5. Check WAIT FOR VALID DATA. The system will only proceed with each calibration point after a valid fixation is detected. - 6. Check RANDOMIZE POINT ORDER. Calibration points will be displayed in a random order to keep the test person from anticipating and looking ahead. - Set the CALIBRATION CHECK LEVEL to MEDIUM. The stronger this is, the more strict the system will be in accepting calibration points and overall geometry. - 8. Click OK to exit the calibration setup window. #### 7.7.5.4 Ethernet Connection to Stimulus PC If you wish the stimulus program to interact with the iView X program, the stimulus PC and the iView X PC must be properly connected. See Network Connection to Stimulus PC 60. ### 7.7.5.5 Run Experiment Now you are ready to run an experiment. #### **Data Recording** Data recording can be automatically controlled by the stimulus program or can be performed manually, see Automated Data Recording 75 Manual Data Recording 77 #### **Analysis** The result of the measurement is an .idf file 285, see Analysis 781. ### 7.7.6 Safety Notes Switch off all components before connecting or disconnecting cables. When setting up the system, make sure that all connectors and switches are easily accessible. Periodically check the technical safety of the device, e.g., check for damage to the housing etc. Servicing, adjustment or repair works may only be carried out by a certified distributor or SensoMotoric Instruments GmbH (SMI). In case your iView X system or a component of the system is damaged, switch off the whole system and unplug it from the power source. Do not use the system until the system or its component has been repaired by a certified distributor or the manufacturer (SMI). Only use original components (cables, power supply etc.) from SMI. In case a component needs to be replaced, only replace it with original components from SMI. Do not repair the system by yourself. Electrical shock hazard. No part of the product may be modified or rebuilt. Any usage other then described in this manual is not permitted, can damage the device and eventually lead to associated risks such as short-circuit, fire, electric shock, etc. We do not assume liability for resultant damages to property or personal injury if the product has been abused in any way or damaged by improper use or failure to observe these operating instructions. In addition, any unauthorized modifications or repairs of the device will render the warranty null and void! ### **Additional Mirror Box Safety Notes** The mirror-box does not contain metallic parts. # Additional Tripod, Camera Box and Eye Control Monitor Safety Notes The tripod and the camera box are designed with as few ferromagnetic parts as possible. However, some small magnetic parts are required for full functionality. Therefore, the tripod with the dolly and the camera box should not be disassembled inside of the magnetic room under any circumstances. The eye control monitor contains some ferromagnetic parts. If the eye control monitor is too close to the magnet it can be attracted. Place the eye control monitor at least in a distance of one meter from the axis of the magnet. An activated eye control monitor will create noise during recording. Therefore, the eye control monitor should be turned off after the setup phase. If it is a small monitor (without own power supply) it will be automatically switched off, when the VIDEO OUT switch is set to EYE TRACKER. Additionally, you might remove the eye control monitor from the magnet room. Always keep the camera box and eye control monitor away from the scanner! Never bring the camera box or eye control monitor into the bore! Always keep maximum distance between camera box/eye control monitor and scanner when bringing the camera box/eye control monitor into the scanner room and fixing the units to the camera table or tripod! Never put the camera box/eye control monitor at any place within the scanner room without fastening the units! Always use the provided camera table or tripod to fasten the camera box/ eye control monitor! Always use the provided straps to fix the camera table to the scanner bed before mounting the camera box! Never have subjects in the scanner while moving the camera box/eye control monitor into or out of the scanner room! Only have subjects in the scanner while the camera box/eye control monitor is properly fixed to the camera table or the tripod! Always fix the eye control monitor to the provided tripod before moving it into the scanner room! Put the eye control monitor in a position which allows for easy reading during eye camera adjustment, and ensures maximum distance to the scanner at the same time! If you don't follow all the rules you may damage the camera box, eye control monitor or the scanner, or jeopardize the subject's safety. ### **Additional Power Supply Safety Notes** The power supply of the infrared LED contains an iron core and is therefore magnetic. Do not place or carry the power supply unit too close to the magnet. It might be attracted by the magnet and damage the system. It is recommended to fasten the power supply unit on the floor or wall. Do not set up the system while a test person is lying inside of the MRI scanner. Only use connecting cables provided by the manufacturer (SMI). Make sure the conductive earth wire is not broken, disconnected, removed or interrupted as this can pose a serious threat to life in the event of malfunction The device must only be operated in dry, indoor spaces. Take precautions to make sure that the insulation of the entire product, the safety sockets, connected cables and mains cables are neither damaged nor destroyed. Always use fuses of the specified type and rating. It is impermissible to use repaired fuses! Never operate the device without supervision while loads are connected. Ensure to protect connected loads from the effects of operational disturbance as well as overvoltages. Do not use the power supply as a direct or indirect charging device. The device shall not be subjected to heavy mechanical stress. The device must not be exposed to extreme temperatures, direct sunlight, intense vibration or moisture. Position the device on a level and sturdy surface. The device generates operational heat. Never insert any objects, block cooler opening of the device, or hinder ventilation in any form or manner. The device is predominantly cooled by convection. Never put a naked flame or any containers with liquids on or near the apparatus. Caution! Capacitors within the device may retain their charge even if the device is disconnected from all power sources. Never turn on the device immediately after it has been brought from a cool into a warmer environment. Condensing water might destroy your device. Leave the device in OFF position and wait until it has reached ambient temperature. Before operating the device, make sure that your hands, shoes, clothing, the floor as well as the device itself are dry. During thunderstorm, unplug the device's power plug from the mains outlet in order to avoid damages due to excess voltage. In industrial facilities, the safety regulations laid down by the professional trade association for electrical equipment and facilities must be observed. In schools, training facilities, DIY and hobby workshops, the usage of electrical devices is to be supervised by trained personnel. If there is reason to believe that safe operation is no longer possible, the device is to be put out of operation and secured against unintended operation. Safe operation is no longer possible if: - -the device has sustained visible damages, - -the device no longer works, - -and the device was stored under unfavorable conditions for a long period of time. - -the device was subject to considerable transport stress. This device is not a toy and should be kept out of reach of children! Should you have any questions that are not answered in this operating manual, please contact our technical customer service, or other experts. ### Electromagnetic compliance WARNING: This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instruction manual, may cause interference to radio communications. ### Electrostatic sensitivity WARNING: All internal electronics are sensitive to high voltage or electrostatic discharge. The system can be destroyed if carelessly handled, so extreme care should be taken during set up and operation. ### **Operating Temperature** The system is designed to operate satisfactorily in an environment where the ambient temperature is between 10 °C and 50 °C, and that there is no water condensation present. #### Storage Temperature Do not store the equipment in an area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. #### Packaging for shipment When shipping, use the shipping cartons in which the units were originally delivered. Do not ship the equipment in a cargo area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. #### Disposal Dispose the device according to legal regulations. ### 7.7.7 Maintenance Switch off the system
before cleaning. Use a clean lint-free, antistatic, slightly moistened cloth to clean the device. Do not use abrasives, detergents or solvents. To clean the mirrors in the mirror-box, use a soft cloth or lens cleaning paper, lightly moistened with alcohol. Make sure that the camera modules do not come into contact with liquids during cleaning. ### 7.8 MEG250 #### **MEG250** The MEG250 is an eyetracking system designed for the use with Magnetoencephalography (MEG) applications. Video images are recorded by a highly sensitive, high resolution infrared long-range camera. The eye of the test person is illuminated via an IR light source. The image information is sent through an optical fibre cable to the control room where it is processed by the iView X eye tracking system. The system is available for sampling rates of 60 Hz and 250 Hz. ### **Approvals** • CE, EMC, Eye Safety # 7.8.1 Hardware Components and Wiring The MEG250 system consist of the following components: - iView X workstation - MEG Camera with fibre optic link (two adapters and a cable) - Illumination Unit - Camera and Illumination Unit mount Only the camera and the illumination unit and its mount rack should be installed in the magnetically-shielded room, all other components are installed in the control room: ### **Hardware Setup** Mount the MEG camera and the illumination unit onto the mounting rack. Place the camera centrally aligned beneath the stimulus screen in front of the patient's eye. The MEG camera should observe the test person's eye from below, so the camera is slightly inclined upwards. The distance between the patient's eye and the MEG camera should be between 100-180 cm. The illumination unit can be placed horizontally aligned left or right of the MEG camera. The distance of camera and illumination to the patient's eye should be equal. The distance between camera and illumination unit should be about 50-60 cm. Connect the Camera Link Fibre Optic Adapter labelled *Camera Side* with the eye camera and the adapter labelled *Framegrabber/PC Side* with the iView X workstation. Connect both adapters with the fibre optic cable. Conduct the shielded power cables of the eye camera and the illumination box to the power supply adapters in the control room. Connect the iView X workstation with the Stimulus PC via ethernet. # 7.8.2 Operating Procedure The following steps describe how to set up and run a typical MEG experiment, after the MEG system has been properly wired 271: - Initialization of Software 276 - Eve Image Adjustment 278 - Run Experiment 279 ### 7.8.2.1 Initialization of Software Turn on the iView X workstation. Start iView X by double-clicking on the iView X icon. Next, iView X must be initialized to run with this configuration. Therefore, the iView X program must be told, which hardware components we use. Usually, it will be done only once on installation, but just in case, the software must be reinitialized, check the following: ### Setup Hardware From the Setup [316] menu go to Hardware [317]. - Set Eye Tracking Device to MEG 250. - Click on the Advanced button. - Choose, if left or right eye will be tracked and recorded. - Set Tracking Mode: Choose between 60 Hz or 250 Hz. # Data mirroring - Choose the Mirroring tab. Check that the option 'data is horizontally mirrored' is selected - Click on OK to close the Advanced dialog. - Click on OK to close the Setup Hardware dialog. # **Activate Eye Camera** Activate eye camera by clicking on the Eye Control 373. # **Setup Calibration** From the menu go to Setup 316 - Calibration 342. - Set Calibration Method to 9 Point with corner correction. Calibration Settings for MEG systems (upper part) - Check Accept Points Automatically. - Check Audio Feedback on next point. - Check Wait for Valid Data. - Set Check Level to Medium. Calibration Settings for MRI systems (lower part) - Go to the Geometry tab. - Set *Stimulus Screen Resolution* to the size of the bitmaps that will be presented. (Typical sizes are 1024x768 or 1280x1024.) - Enter Stimulus Physical Dimension, which is the dimension of the stimulus screen and the Monitor-Head-Distance. Both values will be stored in the iView file. Later analysis tools may use these values. - Click on OK to close the window. # 7.8.2.2 Eye Image Adjustment #### Remote Video Install *Remote Video* on the Stimulus PC. (Remote Video is part of the iTools Package, which can be found on the iView X install CD.) Start Remote Video and <u>establish an ethernet connection [60]</u> with iView X You should see the eye camera image on the stimulus screen. #### Place Test Person Place the test person on the patient chair. ### Camera and Illumination Adjust Use the pan, tilt and height controls on the mounting rack to aim the eye camera and the illumination unit at the patient's eye. Adjust the focus of the eye by turning the ring of the camera lens. Watch the eye image on the stimulus screen while adjusting. The eye camera and the illumination unit is correctly adjusted, if the eye is focussed and both cross hairs for pupil and corneal reflex are visible. When adjustment is finished, close the Remote Video program. # 7.8.2.3 Run Experiment #### Connect to Stimulus PC Establish an ethernet connection 60 between your stimulus program and the iView X workstation. ### **Data Recording** Data recording can be automatically controlled by the stimulus program or can be performed manually, see Automated Data Recording 75 Manual Data Recording 77 # Analysis The result of the measurement is an .idf file 285, see Analysis 781. # 7.8.3 Safety Notes Switch off all components before connecting or disconnecting cables. When setting up the system, make sure that all connectors and switches are easily accessible. Periodically check the technical safety of the device, e.g., check for damage to the housing etc. Servicing, adjustment or repair works may only be carried out by a certified distributor or SensoMotoric Instruments GmbH (SMI). In case your iView X system or a component of the system is damaged, switch off the whole system and unplug it from the power source. Do not use the system until the system or its component has been repaired by a certified distributor or the manufacturer (SMI). Only use original components (cables, power supply etc.) from SMI. In case a component needs to be replaced, only replace it with original components from SMI. Do not repair the system by yourself. Electrical shock hazard. No part of the product may be modified or rebuilt. Any usage other then described in this manual is not permitted, can damage the device and eventually lead to associated risks such as short-circuit, fire, electric shock, etc. We do not assume liability for resultant damages to property or personal injury if the product has been abused in any way or damaged by improper use or failure to observe these operating instructions. In addition, any unauthorized modifications or repairs of the device will render the warranty null and void! ### **Additional Power Supply Safety Notes** Only use connecting cables provided by the manufacturer (SMI). Make sure the conductive earth wire is not broken, disconnected, removed or interrupted as this can pose a serious threat to life in the event of malfunction. The device must only be operated in dry, indoor spaces. Take precautions to make sure that the insulation of the entire product, the safety sockets, connected cables and mains cables are neither damaged nor destroyed. Always use fuses of the specified type and rating. It is impermissible to use repaired fuses! Never operate the device without supervision while loads are connected. Ensure to protect connected loads from the effects of operational disturbance as well as overvoltages. Do not use the power supply as a direct or indirect charging device. The device shall not be subjected to heavy mechanical stress. The device must not be exposed to extreme temperatures, direct sunlight, intense vibration or moisture. Position the device on a level and sturdy surface. The device generates operational heat. Never insert any objects, block cooler opening of the device, or hinder ventilation in any form or manner. The device is predominantly cooled by convection. Never put a naked flame or any containers with liquids on or near the apparatus. Caution! Capacitors within the device may retain their charge even if the device is disconnected from all power sources. Never turn on the device immediately after it has been brought from a cool into a warmer environment. Condensing water might destroy your device. Leave the device in OFF position and wait until it has reached ambient temperature. Before operating the device, make sure that your hands, shoes, clothing, the floor as well as the device itself are dry. During thunderstorm, unplug the device's power plug from the mains outlet in order to avoid damages due to excess voltage. In industrial facilities, the safety regulations laid down by the professional trade association for electrical equipment and facilities must be observed. In schools, training facilities, DIY and hobby workshops, the usage of electrical devices is to be supervised by trained personnel. If there is reason to believe that safe operation is no longer possible, the device is to be put out of operation and secured against unintended operation. Safe operation is no longer possible if: - -the device has sustained visible damages, - -the device no longer works, - -and the device was stored under unfavorable conditions for a long period of time. - -the device was subject to considerable transport stress. This device is not a toy and should be kept out of reach of children! Should you have any questions that are not answered in this operating manual, please contact our technical customer service, or other experts. # Electromagnetic compliance WARNING: This equipment generates, uses and can radiate radio frequency energy, and if not installed and used in accordance with the instruction
manual, may cause interference to radio communications. # Electrostatic sensitivity WARNING: All internal electronics are sensitive to high voltage or electrostatic discharge. The system can be destroyed if carelessly handled, so extreme care should be taken during set up and operation. # **Operating Temperature** The system is designed to operate satisfactorily in an environment where the ambient temperature is between 10 °C and 50 °C, and that there is no water condensation present. ### Storage Temperature Do not store the equipment in an area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ### Packaging for shipment When shipping, use the shipping cartons in which the units were originally delivered. Do not ship the equipment in a cargo area where the temperature will drop below -10 °C or exceed 80 °C. Do not allow moisture to condense on the system. ### Disposal Dispose the device according to legal regulations. ### 7.8.4 Maintenance Switch off the system before cleaning. Use a clean lint-free, antistatic, slightly moistened cloth to clean the device. Do not use abrasives, detergents or solvents. Make sure that the camera modules do not come into contact with liquids during cleaning. # iView Data File (IDF) # 8 iView Data File (IDF) One of the <u>system outputs</u> [28] is a binary iView **D**ata **F**ile (IDF), which is used as a basis for further analysis. This file contains, among others, information on pupil and gaze data, which is needed to extract saccades, fixations and AOI hits. #### See also: IDF Utilities 2851 ASCII File Format 2991 # 8.1 IDF Utilities iView X comes together with two IDF utilities: IDF Converter 285: converts the binary IDF file to ASCII readable text. Event Detector 289: detects saccades, fixations and blinks. # 8.1.1 IDF Converter The IDF Converter is a tool to convert iView **D**ata **F**iles (IDF) into ASCII readable text. The lines and columns are separated by a tab, which enables you to easily load the data into other analysis or table calculating programs. # **Input View Data** Several files can be loaded into a list, which will be processed consecutively. Add file(s): Load files to the list Add folder: Add complete folders to a list ### **Output Format:** | Plain Text | iView X Plain Text format gives you options, to configure 287 your output. | |----------------------|---| | iView 3 compatible | Only for iView 3 users, if you still use iView 3 analysis tools. | | iView 3.5 compatible | Only for iView 3 users, if you still use iView 3 analysis tools with head tracking. | For an overview of the iView X file format see section on Export File Format [299]. ### **Output Files** You can choose a directory, where the output files will be saved. All files have the same names as the input files, but will have '_Samples' added to their original filenames. The extension will be '.txt' Press Convert to start the conversion. Press Quit to close the dialog box. # 8.1.1.1 IDF Converter Export Configuration Choose here which items you wish to be exported. Note that only available items can be checked. In the example above our system is monocular, left eye is tracked, and headtracking installed. The not available data is greyed. # **Eye Data** **Raw Data** means unprocessed data. **Pupil Position**, position of all **C** ornea **Reflexes** and **Diameter** will be given in video coordinates or video pixels, respectively. Point of Regard is data mapped to the calibration area 66. **Gaze Position** is the point inside the calibration area at which the test person actually looked, given in the coordinates of the calibration area. **Plane Number Hit** gives you the number of the plane at which the test person looked in a 3-D-environment. This item is active only, if a headtracker is installed. **Quality Values** are some additional information for each sample. Currently two types of information will be exported: Timing and Latency. *Timing* is set to 1 if sample was delayed and could not be processed in real time. *Latency* is the time in microseconds iView X needed to process a sample. #### **Head Data** Head data exports respective x,y,z coordinates relative to the head tracker's origin (the position of the transmitter cube) for **Head Position**, **Head Rotation** and **Eye Position**. **Gaze Vector** is normalized given in x,y,z coordinates. ### Misc. Data If you check **Trigger Signals**, a column will be added with the status of the IO port for each sample. If you check **Messages**, additional messages will be exported. If you check **Frame Counter**, the frame counter will be exported as a string. # **Others** **Time and Trial number** will always be exported. The timestamp is given in absolute time in microseconds since the system has been started. Load enables you to load a previous saved export configuration file. **Save** asks you to save the current settings to an export configuration file. ### File Format For an overview of the output file format see section on Export File Format [299]. Back to IDF Converter 285]. ### 8.1.2 Event Detector The Event Detector is a tool which detects events in the IDF data file. The output is ASCII readable text. The lines and columns are separated by a tab, which enables you to easily load the data into other analysis or table calculating programs. # **Input View Data** Several files can be loaded into a list, which will be processed consecutively. Add file(s): Load files to the list Add folder: Add complete folders to a list **Planes file for headtracking data**: If some of the files contain headtracking data, a planes.ini file is required. If it is not loaded, the status will display an error. ### **Output Format:** | Export events, such as fixations, saccades and blinks. Click on configure 290 to configure | |--| | your output. | ### **Output Files** You can choose a directory, where the output files will be saved. All files have the same names as the input files, but will have '_Events' added to their original filenames. The extension will be '.txt' Press **Detect** to start the conversion. Press Quit to close the dialog box. # 8.1.2.1 Event Detector Configuration Available plug-ins: Depending on the sample rate the <u>built-in detector 294</u> selects the detection method automatically. Channel: Select, if you want to export left, right or binocular data. **Detection Parameters:** The detection parameters depend on the selected plug-ins. To fully understand the meaning of the parameters it might be necessary to have a look at how the <u>Built-In Detector works</u> 294. **Filter Size for both detection methods:** The Filter Size will be automatically set and need not be changed in normal applications. ### **Low Speed Event Detection** For Low Speed Event Detection the following parameters are displayed and can be changed: Min Duration: minimum fixation duration in [ms] **Max Dispersion:** maximum dispersion value. The unit depends on the experiment type: | | Unit | |-------------------------|--------| | standard data | pixels | | data with head tracking | degree | ### High Speed Event Detection For High Speed Event Detection the following parameters are displayed and can be changed: Min. Duration: minimum saccade duration in [ms] **Automatic Min. Duration:** Currently, the *Auto* option is available only for systems with a sample rate between 240 and 350 Hz. If clicked, the minimum duration varies and is automatically set dependent on the peak threshold. **Peak Velocity Threshold:** in [°/s]. Velocities above the threshold are regarded as belonging to a saccade. **Peak Velocity Window:** The single peak value has to lie in this window. Start and end is given in % of the saccade length. **Geometry:** The Built-In Detector needs the physical dimension of the stimulus area and the distance between head and monitor to calculate angular velocities and accelerations. ### 8.1.2.2 Built-In Event Detector The built-in detector detects saccades, fixations and blinks from a gaze data stream. A saccade is defined as a rapid change in gaze location, and a fixation is regarded as being bordered by two saccades. A blink can be considered a special case of a fixation, where eye data is not present. In general, there are two approaches for the built-in detector: Either it can first look for fixations and the other events are derived from them, or it can first look for saccades, followed by the computation of the other events. Which event the detector searches first, we call *primary event*. If the primary event is *fixation*, the detector uses a *dispersion* based algorithm. If the primary event is *saccade*, a *velocity* based algorithm is used. For low speed eye trackers < 200 Hz, choosing fixations as primary event achieves the best results, whereas primary looking for saccades is sensible for high speed eye trackers. Depending on the sample rate the built-in detector selects the detection #### method: | sample rate | detection
method | primary event | algorithm
based on | |------------------|--------------------------------|---------------|-----------------------| | < 200 Hz | low speed event detection 295 | fixation | dispersion | | 200 Hz and above | high speed event detection 297 | saccade | velocity | ### 8.1.2.2.1 Low Speed Event Detection In the Low Speed Event Detection method, *Fixation* is selected as primary event. The <u>Built-In Detector [294]</u> will first search for fixation events, using a dispersion based algorithm, after which saccade events are computed and derived from the primary fixation events. #### **Blink Detection** A blink can be regarded as a special case of a fixation, where the horizontal and vertical gaze position equals 0. If this is the case, we create a blink event. However, the
duration of the blink event is expanded in order to include the transition period between valid gaze data and the blink. #### **Fixation Detection** The *Minimum Fixation Duration* defines the minimum time window in which the gaze data is analyzed. Fixations smaller than the time window will not be caught. The algorithm identifies fixations as groups of consecutive points within a particular dispersion, or maximum separation. It uses a moving window that spans consecutive data points checking for potential fixations. The moving window begins at the start of the protocol and initially spans a minimum number of points, determined by the given *Minimum Fixation Duration* and sampling frequency. The algorithm then checks the dispersion of the points in the window by summing the differences between the points' maximum and minimum x and y values; in other words, dispersion D = [max(x) - min(x)] + [max(y) - min(y)]. If the dispersion is above the *Maximum Dispersion Value*, the window does not represent a fixation, and the window moves one point to the right. If the dispersion is below the *Maximum Dispersion Value*, the window represents a fixation. In this case, the window is expanded to the right until the window's dispersion is above threshold. The final window is registered as a fixation at the centroid of the window points with the given onset time and duration. #### Saccade Detection At the end a saccade event is created between the newly and the previously created blink or fixation. #### **Parameters** Min Duration: minimum fixation duration in [ms] **Max Dispersion:** maximum dispersion value. The unit depends on the experiment type: | | Unit | |-------------------------|--------| | standard data | pixels | | data with head tracking | degree | # Further Reading: Dario D. Salvucci & Joseph H. Goldberg: <u>Identifying Fixations and Saccades in Eye-Tracking Protocols</u> In: Proceedings of the Eye Tracking Research and Applications Symposium (pp. 71-78). New York, 2000 ### 8.1.2.2.2 High Speed Event Detection In the High Speed Event Detection method, *Saccade* is selected as primary event. The <u>Built-In Detector [294]</u> will first search for saccade events, using a velocity based algorithm. Blinks and fixations are computed and derived from the primary saccade events. #### Saccade Detection From the gaze stream all velocities are calculated. From all velocities the peaks are detected. A peak is defined as the peak value of velocities above the *Peak Threshold* [9/s]. The peak could indicate a saccade, but as we are not sure, yet, we call it saccade-like event. To detect the start of the saccade-like event, we search for the first velocity to the left which is lower than the fixation velocity threshold. To detect the end of the saccade-like event, we search for the first velocity to the right which is lower than the fixation velocity threshold. The fixation velocity threshold is an internal value calculated from the first peakless velocities of the velocity stream. We assume the saccade-like event a real saccade, if - 1. the distance between start and end exceeds the *Minimum Saccade Duration [ms]* and - 2. the single peak value lies inside of the Peak Velocity Window 298. #### **Blink Detection** However, the saccade we have found could still be an artefact as a result of a start or end of a blink. If so, we discard the saccade event and assign the artificial saccade to a blink. To determine, if this is the case we evaluate the pupil diameter during the saccade period. If the speed of the pupil diameter change exceeds an internal threshold value, the saccade is assumed artificial and part of the blink. #### **Fixation Detection** Finally, we create a fixation event between the newly and the previously created blink or saccade. #### **Parameters** Min. Duration: minimum saccade duration in [ms] **Automatic Min. Duration:** Currently, the *Auto* option is available only for systems with a sample rate between 240 and 350 Hz. If clicked, the minimum duration varies and is automatically set dependent on the peak threshold. Peak Threshold: peak velocity threshold in [º/s] **Peak Velocity Window:** The velocity curve must resemble a certain pattern to be regarded as the velocity of a saccade. In a typical saccade the velocity of the eye movement increases, reaches a peak and decreases. At first, the detector assumes this kind of movement to be a saccade. The time between start and end of movement is called saccade length. Then the detector searches, if the velocity peak lies within a certain time window inside of the saccade. If the peak lies outside, the assumed saccade is discarded. The start and end of the time window is given in % of the saccade length. #### Default values: On to peak velocity threshold: Start is 20% of saccade length Off to peak velocity threshold: End is 80% of saccade length # 8.2 ASCII File Format The recorded data can be exported to ASCII readable text by converting the generated IDF file with the IDF Converter 285. The resulting text file can be imported into MatLab™, Microsoft Excel™, or a wide variety of third party analysis software packages available. You can choose between iView 3 and iView X format. The following will only describe the iView X format. The output file consists of two parts: - the Header 300 and - the Data Section 303. Within the data section, messages have a specific Message Output Format 305. ### 8.2.1 Header The IDF header is subdivided into groups with a group title in squared brackets. The entries mean the following: ### [iView X] Converted from left The original data file. Date leftleftleft Date of conversion. Version leftleft Name and version of the converter. IDF Version leftleft Version number of iView X data file. Sample Rate leftleft Sample rate of the data in Hz. Separator Type Unknown Trial Count Number of trials in experiment Uses Plane File Status if a plane file 347 was used Number of Samples Number of samples. Reversed Indicates if x data is reversed (vertical mirrored) or y data is reversed (horizontal mirrored). ### Example: ## [iView] ## Converted from: D:\test\hs2.idf ## Date: 07.05.2009 09:56:14 ## Version: IDF Converter 3.0.11 ## IDF Version: 9 ## Sample Rate: 1250 ## Separator Type: Unknown ## Trial Count: 1 ## Uses Plane File: False ## Number of Samples: 29006 ## Reversed: none # [Run] Subject leftleft User information. Description leftleft Description of the experiment. ### Example: ``` ## [Run] ## Subject: hs2 ## Description: Test #1 ``` ### [Calibration] Calibration Type left Calibration type, number of calibration targets. Calibration Area left Size of calibration area. Calibration Point left Calibration point position. ### Example: ``` ## [Calibration] ## Calibration Type: 9-point ## Calibration Area: 1280 1024 ## Calibration Point 0: Position(640;512) ## Calibration Point 1: Position(64;51) ## Calibration Point 2: Position(1216;51) ## Calibration Point 3: Position(64;972) ## Calibration Point 4: Position(1216;972) ## Calibration Point 5: Position(64;512) ## Calibration Point 6: Position(640;51) ## Calibration Point 7: Position(1216;512) ## Calibration Point 8: Position(640;972) ``` # [Geometry] Stimulus Dimension Size of stimulus area, if available. Head Distance left Head distance, if available. # Example: ``` ## [Geometry] ## Stimulus Dimension [mm]: 300 200 ## Head Distance [mm]: 500 ``` # [Hardware Setup] System ID Computer name Operating System Windows operating system version, major and minor number iView X Version iView X version number ### Example: ## [Hardware Setup] ## System ID: WXDETEL021 ## Operating System : 5.1 ## iView X Version: 2.3.21 ### [Filter Settings] Heuristic Status of Heuristic Filter 339 Heuristic Stage Filter stage (1 or 2) Bilateral Status of Bilateral Filter 339 Gaze Cursor Filter Saccade Length [px] Saccade length of Gaze Cursor Filter Filter Depth [ms] Filter depth of Gaze Cursor Filter ### Example: # [Filter Settings] ## Heuristic: False ## Heuristic Stage: 0 ## Bilateral: True ## Gaze Cursor Filter: True ## Saccade Length [px]: 80 ## Filter Depth [ms]: 20 #### Others Format leftleftleft Indicates, which data types this export contains. Dependent on the export settings 287, the following values may occur: LEFT: leftleftleftleft left eye data RIGHT: leftleftleftleft right eye data RAW: leftleftleft unmapped raw pupil positions DIAMETER: leftleft pupil diameter information CR: leftleftleftleft positions of corneal reflexes POR: leftleftleftleft mapped gaze data or point of regard (POR) quality values QUALITY: leftleftleft PI ANF: plane number hits, only available with leftleftleft headtracking head position, only available with headtracking **HEADPOSITION:** left HEADROTATION. head rotation, only available with headtracking EYEPOSITION: position of the eye in an 3D-environment, only left available with headtracking gaze vector, only available with headtracking GAZEVECTOR: left TRIGGER: leftleftleft trigger data MSG: leftleftleft messages FRAMECOUNTER: frame counter Example: ## Format: LEFT, RAW, DIAMETER, CR, POR, OUALITY Back to ASCII File Format 299. #### 8.2.2 **Data Section** The IDF data section consists of an equal number of tab-delimited columns, which can be easily imported into a spread sheet program. Number and type of the columns depend on the export settings [287]. Each column has a column title, which mean the following: Time time counter in microseconds Type indicates if the row describes a sample (SMP) or a message (MSG) Trial trial number L Raw X raw data position, left eye, x direction, in pixels I Raw Y raw data position, left eye, y direction, in pixels R Raw X raw data position, right eye, x direction, in pixels R Raw Y raw data position, right eye, y direction, in pixels pupil diameter, left eye, x direction, in pixels¹ 308 L Dia X pupil diameter, left eye, y direction, in pixels 1 305 L Dia Y pupil diameter³ [305], left eve, based on pupil area. in pixels¹ L Dia | L Area | pupil
area ^{3[305}], left eye, in square pixels ^{2[305}] | |-------------------|--| | L Mapped Diameter | pupil diameter, left eye, in millimeters (only | | D D' V | available for RED 165 systems) | | R Dia X | pupil diameter, right eye, x direction, in pixels 1 3051 | | R Dia Y | pupil diameter, right eye, y direction, in pixels 1 305 | | R Dia | pupil diameter ^{2[305]} , right eye, based on pupil area, in pixels ^{1[305]} | | R Area | pupil area ^{3 305} , right eye, in square pixels ^{2 305} | | R Mapped Diameter | pupil diameter, right eye, in square pixels=" | | п марреи Біатете | available for <u>RED</u> 165 systems) | | L CR <n> X</n> | cornea reflex position of left eye, with <n> being</n> | | | the number of the CR, x direction, in pixels | | L CR <n> Y</n> | cornea reflex position of left eye, with <n> being</n> | | | the number of the CR, y direction, in pixels | | R CR <n> X</n> | cornea reflex position of right eye, with <n></n> | | 5 05 V | being the number of the CR, x direction, in pixels | | R CR <n> Y</n> | cornea reflex position of right eye, with <n></n> | | / BOD // | being the number of the CR, y direction, in pixels | | L POR X | point of regard (gaze data), left eye, x direction, in pixels $4^{\overline{305}}$ | | / DOD // | • | | L POR Y | point of regard (gaze data), left eye, y direction, in pixels $4^{[309]}$ | | R POR X | point of regard (gaze data), right eye, x direction, | | | in pixels ⁴ 305 | | R POR Y | point of regard (gaze data), right eye, y direction, | | | in pixels ^{4[308]} | | Timing | indicates timing violation. If delayed, value is 1, | | | else 0. | | Latency | latency in microseconds | | L Validity | general quality value left eye ^{5 303} | | R Validity | general quality value right eye ^{5 305} | | Pupil Confidence | indicates validity of pupil diameter values | | L Plane | plane number hit for left eye | | R Plane | plane number hit for right eye | | H POS X | head position, x direction, in millimeters | | H POS Y | head position, y direction, in millimeters | | H POS Z | head position, z direction, in millimeters | |---------|---| | H ROT X | head rotation, x direction, in millimeters | | H ROT Y | head rotation, y direction, in millimeters | | HROTZ | head rotation, z direction, in millimeters | | EPOS X | eye position in a 3D-environment, x direction, in | | | millimeters | | EPOS Y | eye position, y direction, in millimeters | | EPOS Z | eye position, z direction, in millimeters | | GVEC X | normalized gaze vector, x direction | | GVEC Y | normalized gaze vector, y direction | | GVEC Z | normalized gaze vector, z direction | | Trigger | trigger status | | Frame | frame counter | | Aux1 | auxiliary data | Units, if available, are added to the column title. - Pupil diameters can also be given in millimeters. See also <u>Pupil</u> Diameter 340. - Pupil area can also be given in square millimeters. See also <u>Pupil</u> <u>Diameter</u> <u>1340</u>. - Pupil diameters can be given as circle diameter and area size. In this case these columns replace the columns for pupil diameters in x and y directions. See also Pupil Diameter 40 to choose the option. - 4 In a HED-MHT 100 system the point of regard (gaze data) is given in millimeters. - Not supported by all devices. Back to ASCII File Format 2991. # 8.2.3 Message Output Format A message in the IDF file will be exported as follows: ``` <Timestamp> MSG <TrialNumber> <any text> ``` in which <any text> stands for any user defined message. # Example: 28437864110 MSG 1 any text The following ways can be used to generate a message: - use the remote command ET REM 507 - invoke a message through TL Input 331. See also Messaging with BeGaze 436 TM. Back to ASCII File Format 2991. # **Application User Interface** # 9 Application User Interface This section gives a detailed description of the iView X windows and controls. # 9.1 The Workspace On start up of iView X a workspace will be opened, which consists of various windows. Show or hide the windows in the View Menu [367]. Each window of the workspace is dockable, meaning that you can drag and drop the windows to other positions inside the workspace. It will dock automatically to neighbouring windows. Click on ■ to expand and on ■ to hide the window. Save the view configuration under <u>View Configuration [395]</u> in the <u>View Menu</u> [367] # 9.2 Menu Commands The menu commands on top of the iView X workspace consists of the following entries: File 309: functions to load and save files Recording 312: recording commands (start, stop...) Calibration 314: calibration commands (start of calibration sequence...) Setup 316: system setup functions View 367: shows/hides various view inside of the iView X workspace Help 396: help and licence information # 9.2.1 File The file menu consists of the following entries: Open Scene Image... 310 Open AOI... 310 Open Calibration... 311 Save AOI... 311 Save Calibration... 311 Save Data... [312] Clear Recording Buffer [312] Exit [312] # 9.2.1.1 Open Scene Image... Opens a scene image (bitmap) into the viewer. ### Related Topics: How to draw an AOI on a stimulus image 4091 Back to File Menu 309. # 9.2.1.2 Open AOI... Opens an Areas of Interest (AOI 408) definition file. Alternatively, you can click on the icon of the AOI Configuration adocking window. # Related Topics: What are AOIs? 408। How to draw an AOI on a stimulus image 409। Back to File Menu 309. # 9.2.1.3 Open Calibration... Loads calibration coefficients from a file, which is previously saved under Save As Calibration File [31]. Back to File Menu 3091. ### 9.2.1.4 Save AOI... Saves Areas of Interest (AOI 408) to file. Alternatively, you can click on the *save* button of the <u>AOI</u> Configuration docking window. Back to File Menu 309. # 9.2.1.5 Save Calibration... Saves the current calibration coefficients to a file. You have to perform a valid <u>calibration solution</u> before you can save the coefficients. This is useful if you measure the same test person several times under the same conditions. Back to File Menu 309). ### 9.2.1.6 Save Data... Saves recorded data to a file. Back to File Menu 309. # 9.2.1.7 Clear Recording Buffer Clears data buffer and initializes a new recording session. Back to File Menu 309. ### 9.2.1.8 Exit Exits iView X. Back to File Menu 309. # 9.2.2 Recording The recording menu consists of the following entries: Start 313 Stop 313 Increment Trial No. 313 ### 9.2.2.1 Start Starts data recording. On start the trial number [313] will be automatically incremented. Same as clicking on the *start recording* button of the <u>Toolbar</u> (368). Back to Recording Menu 312). ## 9.2.2.2 Stop Stops data recording. Same as clicking on the *stop recording* button of the Toolbar (368). Back to Recording Menu 3121. ## 9.2.2.3 Increment Trial No. An experiment can be divided into single trials. Every start of a recording increments the trial number. The trial number can also be manually incremented by using this command. Same as clicking on the increment trial button Back to Recording Menu 3121. ### 9.2.3 Calibration The calibration menu consists of the following entries: Start 314 Stop 315 Auto Accept 315 Drift Correction 315 Validation 316 Edit Points 316 ### 9.2.3.1 Start Starts calibration. Either accept points manually or let the system automatically accept points by checking <u>Auto Accept [315]</u> in the <u>Calibration Menu [314]</u>. See also Setup Calibration 342. Back to Calibration Menu 314. # 9.2.3.2 Stop Aborts calibration process. Back to Calibration Menu 314). # 9.2.3.3 Auto Accept If checked, calibration proceeds automatically after the eyetracker has recognized a fixation. Same as checking **Accept Points Automatically** in the Setup Calibration 42 dialog box. Note that the first target - usually in the centre of the calibration area - must be manually accepted. Back to Calibration Menu 314). ## 9.2.3.4 Drift Correction Starts drift correction. Only available for Hi-Speed 191 systems. Related topics: **Drift Correction** 72 Back to Calibration Menu 314). # 9.2.3.5 Validation Starts validation. Related topics: Validation 73 Back to Calibration Menu 314. ### 9.2.3.6 Edit Points Displays the calibration point in the scene view, so it can be moved 174 to other locations. Back to Calibration Menu 314. # 9.2.4 Setup The setup menu consists of the following entries: Hardware... 317 Tracking... 339 Stimulus... 342 Calibration... 342 Output... 354 Recording Notes... 364 Message Log... 395 Save Setup... 367 ## 9.2.4.1 Hardware In the tab **Tracking Device** you select the eye tracking components of your iView X system. In the <u>Communication [318]</u> tab you select the I/O devices. The following gives an overview of all components available. If you click on the **Advanced** button you will get more configuration options. # **Eye Tracking Device** | Hi-Speed 191 | Advanced 322 | |------------------------------|--------------| | Hi-Speed Primate 222 | | | HED 4 80 | Advanced 326 | | RED 4 (FireWire) 165 | Advanced 323 | | < <u> < RED% ></u> 165 | Advanced 323 | | RED250 165 | Advanced 323 | | RED500 165 | Advanced 323 | | MRI-LR 240 | | | MRI-SV 240 | | | MRI-NNL | | | Custom | | ### Video Grabber | Falcon 462 | Advanced 321 | |--------------|--------------| | Grablink 463 | | | USB Eye Cam | | | Mouse | Advanced 324 | ### **Head Tracker** Polhemus 101 Advanced 325 ## **Stimulus Capture** Bitmap USB Scene Cam # Scene Video Compression Vidac 464 Advanced 328 ### 9.2.4.1.1 Communication #### Remote Interface 1 and 2 Select input device to remotely control iView X. | RS232 | Configure 328 | |----------|---------------| | Ethernet | Configure 329 | Two ethernet connections can be selected if the used ports [329] are different, e.g. '4444' for Remote 1 and '5555' for Remote 2. This is useful if iView X communicates with
both an external calibration tool and a different stimulus presentation software at the same time. **Accept Remote Commands**: if checked, iView X accepts commands. With this feature enabled iView X can be remotely controlled. **Stream Data**: if checked, iView X sends eye data to external devices. ### TTL IO/Analog Out Choose the I/O interface to send and accept trigger signals. | Lpt IO (I/O via LPT port) | Configure 333 | |-------------------------------------|---------------| | Pio DIO (I/O using Digital IO card) | Configure 331 | | Pio DA (I/O using Analog Out board) | Configure 336 | **Accept Trigger**: if checked, iView X accepts TTL trigger signals and interprets them. Assign a command to a trigger signal in the **Configure** dialog. **Send Trigger**: if checked, a TTL signal is sent to a parallel output card every time, when gaze data enters an <u>area of interest [408]</u> (AOI). The signal is HIGH if gaze position is inside of the AOI, and LOW if it is outside. See also: TTL Output [335]. Activate Output: if checked, iView X sends data over the analog output channels. How to use this feature is described in Analog Out Option [483]. The communication status is indicated as text symbols in the <u>Status Bar</u> ### Related topic: I/O Interfaces 474. Back to Setup Hardware 317. #### 9.2.4.1.2 Corneal Reflex Specify here, how many corneal reflexes should be tracked. In normal cases it is only 1. If two are specified, you can also tell the system, which reflexes should be used, only the left, the right or the average between left and right. Independent usage is only available for MRI-SV 240 users. # **Pupil Only Calibration** It is possible to calibrate the pupil without comea reflection (CR). This option should be used with caution as the comea reflex is crucial to compensate for head movements [18]. To perform a calibration without the cornea reflex set the number of tracked CRs to 0. Back to Setup Menu 316). ## 9.2.4.1.3 Data Mirroring Select here if the measured data should be flipped: **Vertical:** left-right data is reversed, data is flipped on the vertical axis. **Horizontal:** up-down data is reversed, data is flipped on the horizontal axis. ## 9.2.4.1.4 Eye Image Set configuration of the eyetracker frame grabber Falcon Board 462) here. # **Eye Tracking** Select if you want to track left or right eye. This will be noted in the data file. ### **Video Input** Select which connection to the eye camera is used. #### Video Format Select video mode (PAL or NTSC) of the camera. ### **Video Output** Set with which display rate the eye video should be displayed in the <u>Eye Control</u> [372] window. Selecting 1/1 will display every frame, selecting 1/10 only every 10th frame. Default is 1/4. If your system has workload problems you might try to decrease this value. ## 9.2.4.1.5 Hi-Speed Configuration ## **Tracking Mode** Depending on the Hi-Speed model and the licence option you may select between: 500 Hz monocular - 500 Hz binocular 427 - 1250 Hz monocular # **Eye Tracking** Select if you want to track left, right eye or both eyes (binocular). Your selection will be noted in the data file. ### 9.2.4.1.6 RED 4 (FireWire) Configuration ## **Tracking Mode** Select sample rate of tracking. Currently 50 Hz or 60 Hz are available. # 9.2.4.1.7 RED / RED250 / RED500 Configuration # **Tracking Mode** Select sample rate of tracking. Depending on the RED version modes between 60 and 500 Hz are available. ### 9.2.4.1.8 Mouse Configuration Set configuration of mouse output if you run iView in Mouse Mode 4381. ## **Assignment** Select if left eye data, right eye data or both eye data should be produced. #### Data Interval Select the interval at which a new data sample is produced dependent on the recent position of the mouse. An interval of 10 ms means that each 10 ms a data sample is produced, which corresponds to a sampling rate of 100 Hz. #### Blinks and Noise Select here if you want to create blinks with left mouse button and/or noise with right mouse button. ### 9.2.4.1.9 Polhemus Configuration Set configuration of the Polhemus 3space FASTRAK head tracking system here. #### **Head Sensor Port** Specify at which port the head sensor is connected to the FASTRAK System Electronics Unit. The default value is Port 2. #### **Aux Sensor Port** Optionally, an additional sensor can be connected. The six coordinates of the auxiliary sensor is saved as a string in the AUX column of the $\frac{\text{IDF file}}{285}$. ## Serial Interface and Serial Speed Select the COM port of the iView X system at which the Polhemus system is connected, and its connection speed. # Related topics iView X HED-MHT 100 ### 9.2.4.1.10 HED Settings ## **Tracking Mode** Shows sample rate of eye tracking. ### Recorded Scene Video Size The scene video can be displayed in full size (752x480 pixel) or half size (376x240 pixel). For 200 Hz systems only half size is available. # **Audio recording** Enable <u>audio recording</u> [410] by checking the box. ### Eye Select if you want to track left or right eye. Your selection will be noted in the data file. ### Gaze-following gain control For gain control an area of 40x40 pixel around the current gaze point is used Enable this option if you measure under extreme light changing conditions, like car driving in bright sunlight, where inside and outside need to be observed. You can also switch ON/OFF this feature in realtime by using the context menu of the Scene Video. The drawback of this feature is that the overall video seems to flicker. The default setting is OFF. #### Use Hardware Gamma Hardware Gamma can be used to increase the picture quality under extreme light conditions (very dark or very bright light conditions). You can also switch ON/OFF this feature in realtime by using the shortcut Ctrl+H or using the context menu of the Scene Video. The drawback of this feature is that the sensor is used at its limits and you might see the sensor noise ("blue stripes") in the video. The default setting is OFF. # 9.2.4.1.11 Scene Video Compression Set the video compression type here. # 9.2.4.1.12 RS232 Configuration Select the serial interface and speed. ### 9.2.4.1.13 Network Configuration Network connection is established using UDP rather than TCP internet protocol (IP). #### Listen Select IP address of the iView X computer and its port [329]. Click on the drop down button to see a list of choices. If your computer has been already assigned an own address, it will be listed here together with a default address (127.0.0.1). If in doubt ask your network administrator. ## Send UDP packets to Select IP address of remote computer and its port 329. ### **Port** Port should be an unused port between 1024 and 65535. Ports between 0 and 1023 are reserved. # See also: Network Connection to Stimulus PC 60 ### 9.2.4.1.14 TTL Input for digital IO cards It is possible to send TTL <u>trigger signals</u> 475 to iView X to remotely control the system. In this dialog you can assign a command to the trigger signal. The command will be executed, if **Accept Trigger** is checked in the Communication [318] dialog. Each channel can be activated/deactivated separately by using the check boxes. A status light reports, if the channel is active. For each channel choose between three types: **None:** If *None* is selected the effect is the same as deactivating channel. **Message:** If *Message* is selected you can type any user defined message to be recorded in the data file. Function: If Function is selected you can select from a drop down list iView functions 484 to be executed. In the example above the following is set: On the rising edge of channel 1 the function 'ET_REC' is executed. On the rising edge of channel 6 the message 'my message' is timestamped and recorded to the data file. On the falling edges nothing happens. The other channels are deactivated. If the message is exported from the data file to a text file it has a specific Message Output Format 305. For an overview of all commands see Remote Command Reference 484, Note that not all commands may be available for TTL triggering. # 9.2.4.1.15 TTL IO for LPT parallel port adapter In this dialog you set the <u>Parallel Port Address [431]</u>. If you click on **Reset** the parallel port address is set to the default value of 378 (hexadecimal). It is possible to send TTL <u>trigger signals [475]</u> to iView X to remotely control the system. You can assign a command to the trigger signal. The command will be executed, if **Accept Trigger** is checked in the Communication [318] dialog. Four lines of the LPT port can be used as input as given in the following table: | channel no. | pin no. | |-------------|---------| | 4 | 15 | | 5 | 13 | | 6 | 12 | | 7 | 10 | The other channels are ignored. Each channel can be activated/deactivated separately by using the check boxes. A status light reports, if the channel is active. For each channel choose between three types: **None:** If *None* is selected the effect is the same as deactivating channel. **Message:** If *Message* is selected you can type any user defined message to be recorded in the data file. Function: If Function is selected you can select from a drop down list iView functions 484 to be executed. Usually, LPT connectors use grounding switch, which means that the input channels are HIGH by default. So it is recommended to use the **falling edge** of the trigger signal for command assignment. In the example above the following is set: On the falling edge of channel 4 the function 'ET REC' is executed. On the falling edge of channel 5 the message 'my message' is timestamped and recorded to the data file. On the rising edges nothing happens. The other channels are deactivated. If the message is exported from the data file to a text file it has a specific Message Output Format 305. For an overview of all commands see Remote Command Reference 484, Note that not all commands may be available for TTL triggering. See also:
Parallel Input 479 ### 9.2.4.1.16 TTL Output If the gaze data is inside of an area of interest (AOI 408), a corresponding output channel is given a high TTL signal: | AOI number | Output Channel | | |------------|----------------|--| | 1 | 1 | | | | | | | 16 | 16 | | By this means up to 16 AOIs can be signalled. The channels are available if an IO card is installed and if **Send Trigger** is checked in the Communication [318] dialog. To choose the IO card go to <u>Setup-Hardware [317]</u> and select a card under **TTL & Analog IO**. For more information see also the topic I/O Interfaces 474]. # 9.2.4.1.17 Analog Out In this dialog box you can configure four channels for the analog out signal. Each channel can be assigned to a *Data Source*. The specified *Data Ranges* will be transformed to the *Voltage Range* of the analog out signal. If a data source is selected that contains no data, the output will be the minimum value of the voltage range. # **Data Source and Data Range** The following data sources can be selected for left and right eye independently: | Data Source | Data Range | | |-------------|--|--| | Gaze X | X value of gaze data or point of regard. Typical | | | | values would be the size of the calibration area, e.g. if the calibration area is a monitor screen with 1024x768 pixels resolution, a good value for the range would be X=01024. | |-----------------|--| | Gaze Y | Y value of gaze data or point of regard. Typical values would be the size of the calibration area, e.g. if the calibration area is a monitor screen with 1024x768 pixels resolution, a good value for the range would be Y=0768. | | Pupil X | X value of raw pupil data in video coordinates. A typical value would be X=0384 for PAL cameras and X=0320 for NTSC cameras. | | Pupil Y | Y value of raw pupil data in video coordinates. A typical value would be Y=0288 for PAL cameras and Y=0240 for NTSC cameras. | | Pupil-CR X | X value of pupil minus CR. Distance between Pupil and CR. Typical values would be -video resolution+video resolution. | | Pupil-CR Y | Y value of pupil minus CR. Distance between Pupil and CR. Typical values would be -video resolution+video resolution. | | Diameter X | Horizontal diameter of the pupil. Typical values would be X=0384 for PAL cameras and X=0320 for NTSC cameras. | | Mapped Diameter | Mapped pupil diameter for RED 4 (FireWire) [136] and RED [165] systems. | ### **Direct Gain & Offset** If <u>Direct Analog</u> [403] calibration is selected in the <u>Calibration</u> [342] setup menu, these check-boxes are checked and *Data Range* cannot be adjusted. ### **Voltage Range** The maximum voltage range of the <u>Analog Out Board [470]</u> is -10..10 V. Choose a voltage range that fits to the type of device you want to connect to the analog out signal. #### Data Inversion Data Inversion means that the maximum data value will be mapped on the minimum voltage value and the minimum data value on the maximum voltage value. #### **Invert Horizontal Channel** If checked, all X values and the diameter will be inverted. #### Invert Vertical Channel If checked, all Y values will be inverted. ### Out of range behaviour Choose between various types of analog output behaviour if the data goes out of specified voltage range. Set to zero: The signal will be set to 0V. **Keep last value:** The value of the last data sample within the range will be hold. **Extrapolate:** The signal will exceed the specified voltage range. Use this with caution only! Exceeding voltage limits could damage connected hardware! **Clip:** The signal will be clipped. The output signal will be hold at maximum or minimum voltage value. ### **Run Test Output** If you click on *Start*, each channel will output a sawtooth voltage signal ranging from -5V to +5V. # Related topics: Analog Out Option 483 # 9.2.4.2 Tracking... Dependent on the current configuration the following tabs will appear: Input Filter Eye 339 Pupil Diameter 340 Input Filter Head 341 ### 9.2.4.2.1 Input Filter Eye The *Input Filter Eye* filters all incoming eye data. Two different filters can be cascaded: **Heuristic Filter:** Removes noise by cleaning the data from peaks. *Stage 1* removes impulse noise of 1 sample. A latency of 1 sample is added to the data. Stage 2 removes ramp noise of 2 samples. A latency of 2 samples is added to the data. **Bilateral Filter**: A two-dimensional filter, which filters on time and on value. The filter preserves the edges of large changes in the signal while averaging small changes caused by noise. This filter should be used with RED or Hi-Speed systems. No latency is added to the data. If the filters are cascaded, heuristic filtering comes first, followed by bilateral filter **System presets**: Depending on the system setup, iView X suggests its filter. #### **Binocular Data** If the system is binocular you can average left and right eye data. If checked, only one gaze cursor will be displayed and the values for left and right eye data will be identical. ### 9.2.4.2.2 Pupil Diameter Here you select the pupil diameter unit and the way the diameter is calculated. ### **Pupil Diameter Unit** Choose if the unit is video pixels [px] or millimeters [mm]. If [mm] is chosen, the conversion factor will be given in brackets. To adapt the conversion factor, a pupil calibration still must be performed. # **Pupil Diameter Calculation** Choose between two calculation methods: Bounding Box: a squared bounding box will be layed around the pupil. The pupil diameter will be given as x and y values of the bounding box. Area based: The area will be measured. The area will be assumed a circle, from which the diameter is calculated. The pupil diameter will be given as diameter of circle and area size. ### **Output of diameter values** The diameter will be given as a two dimensional value. The output and the units change depending on the chosen settings: | | output in pixels | output in mm | |---------------------|------------------|---------------| | Bounding Box | x [px] | x [mm] | | | y [px] | y [mm] | | Area based | diameter [px] | diameter [mm] | | | area [px²] | area [mm²] | ## 9.2.4.2.3 Input Filter Head To reduce noise, head tracking data can be averaged. Select here, if you want to average data and how many samples should be averaged. If averaging is enabled the default value is 5. ### 9.2.4.3 Stimulus... The default path for stimulus images can be set here. ### 9.2.4.4 Calibration Here you select Calibration Method, Geometry 347, Pupil Diameter Calibration 351 and Scene HT Calibration 352. In case a RED is connected, you can also select the RED Operation Mode [349]. Calibration Method tab if a RED is connected #### Calibration Method Not all calibration methods are available for all Eye Tracking Camera Systems Recommendations which to select are given in the respective user guides. #### 1 Point Calibration 1-point calibration needs a preparation procedure that has to be performed once for a given geometric setup. The preparation is a 5-point calibration. Click on *Prepare* to perform the 5-point calibration. After the preparation succeeding test persons only need to calibrate with 1 point. ## **Accept Points Automatically** If checked, calibration proceeds automatically after the eyetracker has recognized a fixation. This is not true for the first point, which must always be manually accepted by the operator. For most test persons, the automatic calibration is a fast and accurate method. In some cases it may be easiest to manually accept each point, particularly if the test person is incapable of holding a fixation for long. If unchecked, the operator must manually accept all points with F6 or the accept point button Same as Auto Accept 315). ### Audio feedback on next point If checked the computer gives an audio feedback, when it displays the next calibration target. ### **Randomize Point Order** If checked the calibration targets are displayed in randomized order. This will hopefully prevent the test person from anticipating the next calibration point and looking for it before a fixation has been recorded for the present point. If an individual test person has trouble waiting for each point even with "Randomize Point Order" checked, try manually triggering calibration points (turn "Accept Points Automatically" off). If not checked, the system will show calibration points in the same order every time. #### Wait for Valid Data If checked, calibration proceeds only if the system recognizes a fixation on the current calibration target. If not checked, calibration proceeds even if some fixations could not be recognized. These calibration points will be repeatedly presented until for every calibration point a valid fixation has been detected. # Average data for ___ms Minimum time for a fixation. The eye must gaze at the calibration target at least for this time to be recognized as a fixation. A longer period will minimize the chance that the test person glanced in the wrong place briefly. It will also average more points for a more representative sample of the fixation location. However, if set too high, test persons may have difficulty fixating for the time required. If Accept Points Automatically is not checked and the operator manually accepts calibration points, the fixation data is still averaged for the time specified here. ### Calibration Speed Sets the speed at which the program proceeds to the next target. Slow or Fast are possible options. Default is Slow. #### Check Level Specifies the tolerance level, with which the fixations are accepted. It does not necessarily translate directly to an increase in accuracy – a test person who calibrates well
will calibrate the same at any check level. However, it does control how likely the iView will be at spotting a bad calibration. In general, it is best to use the highest check level that is practical for your application. Check Level can be set to the following: **Strong:** The eye should be very stable during fixation. The maximum amount of checking will be done. This will give the least potential problems during calibration but many test persons will have difficulty fixating well enough for this check level. It is often not practical for low-light applications such as fMRI. **Medium:** A medium amount of checking will be done. This is probably the most useful check level for most experiments. **Weak:** Less checking is done. This is often used to compensate for difficult conditions (poor IR lighting) or difficult test persons (people who can not fixate well). **None:** No check level is performed at all. The system will accept any fixation information as a valid calibration. Use with caution. #### **Reset Calibration Points** By default the distance between the outer calibration points and the border of the <u>calibration area</u> [66] is five per cent of the respective horizontal or vertical dimension. The inner points are equally distributed. Click on the *Reset Calibration Points* button to set the points to its default positions. This is useful if the calibration points have been previously changed by <u>Moving calibration points</u> [74] and you wish to restore them. Back to Setup Menu 316). ### 9.2.4.4.1 Geometry #### Stimulus Screen Resolution Select size of the two-dimensional <u>calibration arealed</u> or enter your self-defined values. This is the plane on which the eyetracker will be calibrated. iView X needs these values to map the eye position data to the point of regard, which is the point at which the eye is looking on the plane. ### Stimulus Physical Dimension and Monitor-Head Distance Enter *Stimulus Physical Dimension*, which is the dimension of the stimulus screen and the Monitor-Head-Distance. Both values will be stored in the iView data file. Later analysis tools may use these values. ### **Planes and Misc Settings** Only available if 13 Point Head Tracking HED is selected. Specify here the paths in which planes.ini and iview.ini from the <u>Surveyor [449]</u> are located. Back to Setup Calibration 342. ## 9.2.4.4.2 RED Operation Mode The RED system offers several operation modes. See <u>RED User Guide 169</u> for details. If you select *Monitor Integrated* and click on *Edit* you can <u>change the</u> calibration point positions [350]. If you select *Stand Alone*, you will have more options in the <u>RED - Stand Alone Geometric Setup</u> 350. Back to Setup Calibration 342. #### 9.2.4.4.2.1 RED - Stand Alone Geometric Setup Here you have to enter the geometric dimensions of your setup for the <u>RED</u> stand alone system 177. If you click on the *Points* tab you can <u>change the calibration point positions</u> #### 9.2.4.4.2.2 RED Calibration Points Here you can change the calibration point positions. To change the positions drag & drop the targets. ## **Load Image** Opens a file selection box, with which you can choose an image. The image will be set to the background of the calibration targets. ### Clear Image Removes image from the view. #### Reset Points Resets calibration point positions to factory settings. ### 9.2.4.4.3 Pupil Diameter Calibration By default, pupil diameter is given in video pixels. If you need millimeters as output, the pupil diameter must be calibrated. To activate calibration go to Setup [316] Tracking Pupil Diameter [340] and choose the option calibrated output in mm. Then go back to this tab and proceed as follows: - Prepare a black circle that can be assumed a pupil, measure the diameter with a ruler and enter the value in [mm] under Target Diameter. - 2. Hold the black circle in front of the eye camera at the distance, where the eye should be, so that the circle is tracked as a pupil. - 3. Click on *Calibrate*. The system calculates a *Conversion Factor* that will be used in subsequent recordings to convert diameter pixel units into millimeters. Note: Pupil Diameter Calibration is not available for RED systems. RED systems already calculate pupil diameter in mm and write the values into the IDF file 303 in the column L/R mapped diameter. Back to Setup Calibration 342. #### 9.2.4.4.4 Scene HT Calibration Configure additional overlay settings for HED-MHT (Head Tracking) 100): Cursor overlay can be done either on Monitor Plane display or on Scene Camera display. It is not possible to activate both at the same time. #### **Monitor Plane** This function takes effect only if the scene video is used. **Calibrate:** If you choose Monitor Plane, *Calibrate* in the Monitor Plane section can be selected. If you press the *Calibrate* button or <Ctrl>+<F5>, two targets will appear on the iView X control screen. Drag both targets until the two points are visible in the upper left and lower right corners of the monitor screen. After this the Monitor Plane display is calibrated. A cursor will be displayed at gaze position on the monitor screen if the test person looks at it. ### Scene Camera This function takes effect only if the scene video is used. **Calibrate:** If you choose *Scene Camera*, *Calibrate* in the Scene Camera section can be selected. If you press the *Calibrate* button or <Ctrl>+<F5>, two targets will appear on the iView X control screen. Make sure that the scene camera is directed to the 13-point calibration plane, so that the calibration plane will be visible on the iView X control screen. Select *Center Point* and *Offcenter Point*. Center Point and Offcenter Point: Choose the two calibration targets of the calibration plane to which the scene video overlay should be mapped. Usually it would be point 1 for the Center Point and point 2 for the Offcenter Point. On the iView X control screen you see two dots, red and green, that should be mapped to the selected Center Point and Offcenter Point. Ask the test person to move his head until the center dot (red) matches the Center Point. Drag the second dot (green) on the screen until it maps the Offcenter Point. After this the Scene Camera display is calibrated. A cursor will be displayed at gaze position on the scene video. Enable Debug and Map to Calibration Point: The accuracy of the calibration can be visualized by checking the *Enable Debug* checkbox. Then an overlay target will appear on the screen which should exactly map to one of the thirteen calibration points, which is selected in the *Map to Calibration Point* field. **Off-Plane Distance:** If no plane is hit by the gaze, an *Off-Plane Distance* can be set, which will be used to calculate the point of regard. To choose a proper value here will minimize parallactic errors for the gaze data outside or between the planes. ### Scene Bitmaps This function takes effect only if the scene video is not used. **Draw Points:** Each defined plane can be attached to a bitmap. If a point of regard falls on a specific plane its attached bitmap will be displayed in the bitmap view. The accuracy of the calibration can be visualized by checking the *Draw Points* checkbox. Then all previous measured points on each bitmap will be displayed. #### **Plane Parameters** In the field below all plane parameters are listed as given in planes.ini which comes from the <u>Surveyor [449]</u>. The plane which is the Calibration Plane is marked <u>red</u>. The plane which is the Monitor Plane is marked <u>blue</u>. If a plane is both Calibration and Monitor Plane it is marked green. #### Related topics: Adding Head Tracking Functionality to iView X 119 Back to Setup Calibration 342. # 9.2.4.5 Output... The following output options can be configured: Recording Options 3551 Gaze Cursor Filter 3561 Gaze Cursor Properties 3571 Scene Video 3581 Overlay Selection 3621 Overlay Options 3631 ### 9.2.4.5.1 Recording Options Set your options for data recording here. # **Limit Recording To** If you check the box the recording stops automatically after a given time in seconds. Currently recording time is limited to 2 h. # Real World Time Messages If you check the box, messages containing the real world time in UTC format will be added to the data file. The message will be inserted after a recording is started and before a recording is stopped. The time stamped message contains the current number of seconds and milliseconds since 01-01-1970 00:00:00 GMT. #### Format: <timestamp> MSG <trial number> # UTC: <seconds> <milliseconds> #### Example: 2298022189 MSG 2 # UTC: 1218638861 968 ### Eye Image Recording (Debugging) If you check the box, eye image recording for quality evaluation will be enabled. Eye images will be recorded during calibration. #### 9.2.4.5.2 Gaze Cursor Filter The Gaze Cursor Filter filters data needed to display the cursor. This filter affects cursor display only and does not influence recorded gaze data. ## **Cursor Filtering** Manual: Filter depth and saccade length can be set manually. Filter Depth: The Overlay Output Filter reduces noise by averaging the data over a period of time. The time can be set from 0 ms to 500 ms. **Saccade Length:** If saccades are detected the *Gaze Cursor Filter* will be switched off. The jump of the cursor will be clearly visible and not be smoothed. The minimum saccade length, which must be exceeded to switch off the *Output Filter*, can be set from 0 to 500 pixels. ### 9.2.4.5.3 Gaze Cursor Properties Specify size and shape of the overlay cursor. The cursors can be configured for left eye, right eye and the calibration target, independently. First select the cursor type to be changed, then select the style. For each cursor the following can be specified: **Shape:** one of *Circle*, *Square* or *Crosshair*. For *Calibration Cursor* the shape is preselected and cannot be changed. Size: Diameter of the whole cursor overlay. **Use Pupil
Diameter:** If checked, size of cursor overlay changes with pupil diameter. Line Width: width of the line. **Color Foreground:** Foreground color of the overlay. Color of the line. **Color Background:** Background color of the overlay. Color the area inside the line. **Transparent:** If clicked, this part of the overlay is invisible, i.e. has the same color as the underlying scene video or image. #### 9.2.4.5.4 Scene Video Configure shape and size of the scene video cursors: #### Installed Hardware Shows you resolution of installed overlay card. ## **Standard Overlays** Specifies shape and size of the cursor overlay for each cursor. To specify shape and size of the various overlay cursors first select the cursor, whose shape you wish to modify. Choose between cursor for left eye (*Gaze Cursor Left*) cursor for right eye (*Gaze Cursor Right*) and the target displayed during calibration (*Calibration Cursor*). For each cursor the following can be specified: **Shape:** one of *Circle*, *Square* or *Crosshair*. For *Calibration Cursor* only *Crosshair* can be selected. Size: Diameter of the whole cursor overlay. **Border:** Thickness of the margin. **Color Fore:** Foreground color of the overlay. Color of the area inside the margin. **Color Back:** Background color of the overlay. Color of the margin. **Hollow:** For *Color Fore* and *Color Back hollow* can be chosen. The respective part of the overlay is then transparent, i.e. has the same color as the underlying scene video or image. **Size = Pupil Diameter:** If checked for left, right or both eyes, size of cursor overlay changes with pupil diameter. ## **Additional Overlays** Choose here type and position of additional overlays, such as frame counter, time counter etc. ### **Working Area** Under Setup [316] Calibration [342] you set the size of the calibration area [66] in units. The calibration area can differ from the area you see in the scene video view, which is the case if the video comes from a scan converter. Here you can adjust the working area of the gaze cursor overlay. The working area will be mapped to the calibration area. The current used Offset and Gain values are displayed. **Adjust:** Click on *Adjust* to define the working area of the gaze cursor overlay. In the upper left corner of the *Scene Video view* you will find a red cursor, in the lower right corner a green cursor. These two cursors define the bounding rectangle of the working area. Drag and drop the red cursor to the upper left corner of the desired working area and the green cursor to the lower right corner. If you use a scan converter, the working area usually is the visible area excluding the black margins. After you have finished adjusting you can press the *Esc*> key. If you start calibration, you will see the working area in the *Scene Video view* as a rectangle. **Reset:** Click on *Reset* to set Offset to 0,0 and Gain to 1.0,1.0. The working area equals the calibration area and no mapping will be done ## 9.2.4.5.5 Overlay Selection The overlay behaviour can be set here. The following types of overlays can be selected: **Time**: shows date and time **Logo**: shows a user defined logo **Description**: shows a description of current run **Stamp**: shows timestamp **TTL: shows TTL signals** Trial No.: shows current trial number **Border Distance**: move the slider to adjust the margin width between text and the boundary of the image. More configuration options see Overlay Options 363. ### 9.2.4.5.6 Overlay Options In this dialog the appearance of the overlays is configured. The overlay selection is configured here 362. **Text**: arbitrary text that can be displayed in the video. **Font and Color**: select font and color. If *transparent* is clicked, this part of the overlay is invisible, i.e. has the same color as the underlying scene video or image. **Logo**: select an arbitrary bitmap that will be displayed in the video. Note that the transparency color is RGB (255, 128, 255), meaning that pixels with this RGB value are transparent and have the same color as the underlying scene video. Video File: It can be selected if gaze cursor should be overlaid on the recorded video, or not. By default, the gaze cursor will be recorded. This option can also be selected in the <u>Toolbar</u>[368]. # 9.2.4.6 Recording Notes... During a recording it is possible to write a user defined message into the iView Data File (IDF). ## **Configuration Dialog** In this dialog ten shortcuts can be given to arbitrary messages: ## **Working with Recording Notes** - 1. Start a recording. - 2. Press **<Ctrl> + <Enter>** to catch the timestamp, at which the message should appear. A dialog will be displayed: - 3. Select a predefined message (i.e. press one of the number keys) or type any other message. - 4. Press <OK> to write the message to the data file at the given timestamp. # 9.2.4.7 Save Setup... The current configuration can be saved in a file by using this command. A file selection dialog will pop-up, asking for a name of the file. The file has the extension .ivs. See also loading a setup file 430. This is useful when you want to run iView X as a background task 427. ### 9.2.5 View Shows/hides various views inside of the <u>workspace [308]</u>. The respective view is visible if a tick is displayed next to it. The windows are free dockable windows, so you can drag and drop them to various places of the workspace window. The following windows can be displayed: Toolbar 368 Status Bar 369 Online Data 370 Eye Image 372 Direct Calibration Controls 387 AOI Configuration 388 Performance Measures 390 RED Tracking Monitor 391 System Log 391 Configure Logging... 395 Select and Manage Views... 395 ### 9.2.5.1 Toolbar The toolbar is at the top of the <u>workspace look</u>. It gives you short-cuts to important features. Here is an overview of the buttons and its meanings: The right half of the toolbar shows the following: Elapsed: Time that has elapsed since recording has been started. **Remaining:** Usually recording time is limited to 2 hours. The limit can be changed under <u>Setup - Output - Recording Options</u> Setup - Output - Recording Options reached. Trial: Current trial number. Record Gaze Cursor Overlay: Only available for <u>HED systems 80</u>. If checked, gaze cursor overlays will be recorded together with the scene video. This option can also be selected under <u>Setup - Output - Overlay Options</u> 363. Back to View Menu 367. #### 9.2.5.2 Status Bar The status bar is at the bottom of the workspace 308. ## **Timing Status** A light at the far right of the status bar indicates the timing status: | light status | system idle | | real time
violation | |--------------|-------------|---------|------------------------| | or 🧖 | yes | no | no | | 6 | no | enabled | no | | (5) | no | enabled | yes | A bright red light indicates timing problems. Try to switch off background tasks of the system (such as screensavers etc.) to improve performance. Note that activating video recording will likely result in loss of real time capability. ### **Communication Status** A two letter text symbol indicates the Communication 318 status: | text symbol | communication status | | |-------------|-------------------------|--| | DS | data streaming enabled | | | RC | remote commands enabled | | | TO | trigger output enabled | | | TI | trigger input enabled | | | AO | analog output enabled | | Back to View Menu 367). ### 9.2.5.3 Online Data The window displays online data in two modes: graphical 370 numerical 371 Back to View Menu 367. ## 9.2.5.3.1 Online Data Graphic Displays incoming data. On the x-axis is a time window of the last 10 sec. On the y-axis are the values for pupil gaze, diameter or TTL trigger signal. ### **Graph orientation** The (0,0)-point is in the upper left corner of the <u>calibration area</u> [66]. This means that a gaze movement downwards is visualized in the graph as a movement upwards of the y data. A gaze movement to the right is visualized as a movement upwards of the x data. Back to View Menu 367. #### 9.2.5.3.2 Online Data Numeric ### Left and Right The Gaze Position of the eye is presented in units of the calibrated area, Pupil Pos and Pupil Diameter are in pixels of the eye camera video. #### TTL In the TTL field the status of all channels of the parallel port is displayed. #### **Plane** The number in the Plane field means the following: - -1 no plane is hit by the gaze - 0 no Head Tracking installed - 1...n number of plane that is currently hit by the gaze #### Head This field only contains valid values if a Head Tracker is installed. It contains x, y and z head position in units of the measured area and x, y, z angles of the heads rotation. Back to View Menu 367. # 9.2.5.4 Eye Image Control The contents of the eye image control varies slightly depending on the used camera system. In general three main variants are possible: Eye Control for Monocular Eye Tracking 373 Eye Control for Binocular Eye Tracking 375 Mouse Control 377 Note: RED 165 systems do not have a configurable Eye Image Control. Back to View Menu 367 ## 9.2.5.4.1 Eye Control for Monocular Eye Tracking ### Eye Video Image Shows camera image of the eye camera. If the image is not shown, click on the window to enable eye tracking. In the picture above the camera is properly aligned. The two cross-hairs indicate that the pupil is detected as well as the corneal reflex. (Note that in this example the test person wears glasses, so also a big reflection of the infrared light is to be seen, which illuminates the eye. As this reflection is too far away from the pupil, it does not effect the quality of the measurement.) #### **Thresholds** Here the detection thresholds for pupil and corneal reflex (CR) can be set. Move the pupil slider until a white cross-hair is visible in the eye control. The center of the cross-hair should be the center of the pupil. Move the reflex slider until a black cross-hair is visible in the eye
control. The center of the cross-hair should be the center of a bright dot near the center of the pupil. *Dynamic Threshold*: If checked, the eyetracker automatically adapts the pupil threshold to slightly changing environments like small movements of the head, changing of light etc. ## Tracking If the eye tracker has difficulties to track the pupil or CR, you can change the <u>tracking parameters</u> (380). See also chapter <u>Advanced Eye Image</u> <u>Adjustment</u> (402). ## **Image Adjust** Here you can adjust <u>brightness and contrast</u> of the eye image (may differ depending on used eyetracker). ## **Auto Adjust** If you click on the *Auto Adjust* button the image is adjusted regarding pupil threshold and image balancing (currently this is available only for Hi-Speed [191] and Hi-Speed Primate [222] systems). Back to Eye Control 372. ## 9.2.5.4.2 Eye Control for Binocular Eye Tracking In binocular mode 427 the eye camera video shows images of both left and right eye: With the slider directly below the video images the interpupillary distance can be adjusted. ### **Thresholds** Here the detection thresholds for pupil and corneal reflex (CR) can be set separately for each eye. Move the pupil slider until a white cross-hair is visible in the eye control. The center of the cross-hair should be the center of the pupil. Move the reflex slider until a black cross-hair is visible in the eye control. The center of the cross-hair should be the center of a bright dot near the center of the pupil. *Dynamic Threshold*: If checked, the eyetracker automatically adapts the pupil threshold to slightly changing environments like small movements of the head, changing of light etc. ## **Tracking** If the eye tracker has difficulties to track the pupil or CR, you can change the <u>tracking parameters</u> 380. See also chapter <u>Advanced Eye Image</u> Adjustment 402. ## Image Adjust Here you can adjust <u>brightness and contrast [379]</u> of the eye image. # **Auto Adjust** If you click on the *Auto Adjust* button the image is adjusted regarding pupil threshold and image balancing (currently this is available only for Hi-Speed [191] and Hi-Speed Primate [222] systems). Back to Eve Control 372. #### 9.2.5.4.3 Mouse Control In Mouse Mode 438 the eye tracker control is replaced by a mouse control: Click on *Grab* to start creating data contingent on mouse movements. With the slider you can set the pupil diameter. Back to Eve Control 372. ## 9.2.5.4.4 Image Adjust Move the slider to adjust the brightness of the eye video. If you click on *Default*, the value returns to factory settings. # 9.2.5.4.5 Image Adjust MRI Contrast and brightness can be manually adjusted here. If you turn Auto Gain Control (AGC) on, contrast and brightness will be adjusted automatically. Only change anything here if you know what you are doing. It is recommended to use the default values, which are set if you click on the *Default* button. ### 9.2.5.4.6 Image Adjust Hi-Speed ## **Brightness and Contrast** After the test person has been comfortably seated in front of the camera and the eye is properly visible in the eye control window, you can adjust brightness and contrast of the eye video by moving the sliders. #### Default Click on Default to reload the default values. #### **Auto Balance** In case the left and the right half of the image differ in brightness and contrast, click on *Auto Balance* to eliminate this effect. ## 9.2.5.4.7 Tracking If it is difficult to track the pupil or the cornea reflex (CR), it may be necessary to adjust the tracking parameters of the eye tracker. See more in chapter Advanced Eye Image Adjustment [402]. Choose between the following: About 380 Overlays 381 AOI 382 Rejection 383 Linecut 384 Thresholds 386 ### 9.2.5.4.7.1 About Information about this eyetracker. Back to Tracking Parameters 380. ## 9.2.5.4.7.2 Overlays Switch on or off the various overlays. Back to <u>Tracking Parameters</u> [380]. #### 9.2.5.4.7.3 AOI Configure the area of interest (AOI) of the eye camera. Increase or decrease the area by using the sliders. This is the area in which the eyetracker tries to find the pupil and the corneal reflex. For all sliders it is possible to use the cursor keys to fine adjust. If the AOI is visible in the Eye Control [372] camera video you can change its size with the mouse. (Which overlays are shown in the camera video can be set in the Overlays [381] tab.) Do not mix up this camera AOI with the gaze data AOI 4081. Back to Tracking Parameters 380. ### 9.2.5.4.7.4 Rejection Configure various rejection parameters here. If you check the **Debug** box you see in the <u>eye control window[372]</u>, which parameter is responsible for rejecting the pupil. If it is difficult to detect the pupil change the according parameter. Under normal trial conditions the default values need not be changed. The default values adapt themselves depending on the eye tracking system used. Click on **Reset** to load the default values. For all sliders it is possible to use the cursor keys to fine adjust. ## Rejection parameters The eyetracker uses the rejection parameters to detect the pupil. The values of the various parameters must lie within the minimum and maximum range to be considered a valid (non-rejecting) pupil parameter. | Parameter leftleft | Description | |-------------------------|--| | pupil area leftleftleft | pupil area in pixel | | pupil density leftleft | ratio between pupil area and area of bounding | | | box. 1 means that the pupil area equals the | | | bounding box. | | pupil perimeter left | pupil perimeter in pixel. | | reflex perimeter left | perimeter of corneal reflex (CR) in pixel | | reflex pupil distance | distance between CR and pupil center in pixel. | Back to Tracking Parameters 380. #### 9.2.5.4.7.5 Linecut The Linecut diagram shows on the x-axis a vertical line cut through the eye image. On the y-axis the greyscale value of each point in the line is shown. The greyscale value is higher, the brighter the point, and lower, the darker the point. The location of the cut can be moved horizontally. Back to Tracking Parameters 380. #### 9.2.5.4.7.6 Thresholds Set pupil and reflex detection thresholds here. Before you change settings use the controls in the Eye Control [372] window first to properly align the camera to the pupil. ### **Pupil** Move the pupil slider until a white cross-hair is visible in the eye control. The center of the cross-hair should be the center of the pupil. Once a correct threshold is found you can click on *Dynamic* to let the eyetracker automatically adapt the threshold to slightly changing environments like small movements of the head, changing of light etc. #### **Corneal Reflex** Move the reflex slider until a black cross-hair is visible in the eye control. The center of the cross-hair should be the center of a bright dot near the center of the pupil. For all sliders it is possible to use the cursor keys to fine adjust. Back to Tracking Parameters 380. ### 9.2.5.5 Direct Calibration Controls If <u>Direct Analog</u> 403 calibration is used, gain and offset of the analog channels for gaze movement can be set here. **Ranges:** Opens a window, in which you can set the ranges for gain and offset that can be adjusted during the calibration process. **Center L**: If clicked, center of the screen is defined with the given channel settings for the left eye. **Center R**: If clicked, center of the screen is defined with the given channel settings for the right eye. See also Analog Gain/Offset Calibration 403. Back to View Menu 367. # 9.2.5.6 AOI Configuration The Area of Interest (AOI) 408 configuration window displays in a tree view, which areas are drawn on the stimulus image. The corner points of the AOI are given in pixel coordinates. On top of the AOI configuration window are 5 icons: deletes all visible AOIs and creates a new AOI definition set opens an AOI file 310 saves AOIs to file 311 deletes current in the tree view selected AOI shows/hides AOIs ### Related topics: Open a stimulus image 101 How to draw an AOI on a stimulus image 409 Back to View Menu 367. ### 9.2.5.7 Performance Measures Indicates workload of the system. The bar at the top shows the average latency of a sample from the time it is grabbed at the eyecamera until it is ready to display on the iView X workstation. In this case it it 3.8 ms. The graph below shows the same as histogram. On the x-axis is the latency in ms. The maximum time is the refresh time of the camera system, in this case 20 ms, which corresponds to 50 Hz. The y-axis is the number of hits. If the latency is bigger than a refresh time the value for maximum time (here 20) will be incremented. Heuristic filtering influences the latency. See <u>Setup Output [354] Input Filter</u> Eve [339] for more information. Back to View Menu 367. # 9.2.5.8 RED Tracking Monitor The RED Tracking Monitor gives a symbolized visualization of the tracked eyes and the test person's placement. If no test person is sitting in front of the RED camera system, the control only shows a blank page. Back to View Menu 367. # 9.2.5.9 System Log This window displays messages, which fall into three categories: User 392 System 393 Error 394 Back to View Menu 367. ### 9.2.5.9.1 User Displays user messages, e.g. calibration started, data recording started etc. Choose from the menu <u>Setup Message Logases</u> to customize which messages should be displayed. Back to System Log उ9ी. # 9.2.5.9.2 System Displays system messages like, e.g., which CPU speed is detected, how many disk space is available etc. Choose from the menu <u>Setup Message Log [395]</u> to customize which messages should be displayed. Back to System Log 391. ### 9.2.5.9.3 Error Displays error messages. In this example the camera initialization failed for some reason. (Probably the camera is switched off.) Choose from the menu <u>Setup Message Logas</u> to customize which
messages should be displayed. Back to System Log 391. # 9.2.5.10 Configure Logging... ### Log Message Filter Choose between three severity levels, which decide, how many messages you will see in the System Loggsp1 window. ### **Window Tips** Check this box if you want to see tips. ### Warnings Check this if you want to see warnings 4001. # 9.2.5.11 Select and Manage Views As every window in the <u>workspace [308]</u> is dockable you can create your own arrangement of windows that you want to see. Here you can save up to four view configurations. The default configuration, which cannot be overwritten, is the configuration on start-up of iView X. Back to View Menu 367. # 9.2.6 Help iView X is capable of context sensitive help. This means that every window and every dialog has its own help. In general there are three equal ways to get help on a topic: ### Help button In many dialog boxes you find a help button in the lower right corner: Click on it to get help for this dialog. #### Question mark button In many other dialog boxes you find a question mark button in the upper right corner: Click on it, then click on an area inside of the dialog box. You get help on this item. ### Pressing <F1> You can also press the F1-key on your keyboard. ### **Evoking Help** If you evoke help by one of the methods above, the respective chapter of the online help book 397) will be opened. # 9.2.6.1 Help Topics Opens the Online Help book. iViewX.chm You can also doubleclick on the file iViewX.chm. Back to Help Menu 396. ### 9.2.6.2 Tutorials Not available in this version. Back to Help Menu 396). ### 9.2.6.3 **System Info** Shows you which modules are currently loaded. Back to Help Menu 3961. #### 9.2.6.4 License Shows you which components are licensed, the product ID, the reference code and the expiration date. If you click on <u>Terminate License 34</u> a termination code will be generated and saved to a file. If you then exit iView X you need a new License Key for activation. ### Related topics: Software License 31 Back to Help Menu 3961. ### 9.2.6.5 About iView Displays information of this program. Back to Help Menu 396. # 9.2.6.6 Tip of the day Displays tips of the day. Back to Help Menu 3961. # 9.3 iView X Hotkeys | Key | Description | |--|---| | F1 | Displays help menu. | | F3 | Starts/stops recording. | | F5 | Starts calibration 65. | | F6 | Accepts target fixation. | | F7 | Starts drift correction. | | F8 | Starts validation. | | <space></space> | Accepts target fixation. | | Ctrl + Shift + Cursor Up/
Down/Right/Left | Shifts gaze manually to fixation point. | | Ctrl + <enter></enter> | Pops up <u>Recording Notes</u> अवस् | | Ctrl + F5 | starts scene cursor calibration 352 in head | | | tracking mode | |-------------------|--| | Ctrl + Shift + F3 | Starts video recording of eye image 428. | save and recall work on positional, zoom and focus parameters of the camera. Same as pressing on the **Save** and **Recall** buttons on the <u>Eye Camera Alignment [372]</u> window. Parameters are saved at program end. # 9.4 Warnings and Error Messages This chapter explains some warnings and error messages that might occur, and describes, what the user should do in these cases. # 9.4.1 Missing DLL: clser*.dll If settings files are deleted, iView X might display a message that the DLL clser*.dll cannot be found. iView X asks the user to specify the directory. The DLL can be found in <install directory>\Euresys\MultiCam\WinWDM <install directory> is the directory where the Euresys driver is installed. In most cases it is C:\Program Files. ## 9.4.2 Cannot connect to RED If a message appears: "Cannot connect to RED", try one or more of the following: - . Check that the Illumination Controller RED (e-box) is switched on. - . Close iView X, unplug and replug the firewire connection, then restart iView \boldsymbol{X} - . Reset the camera by switching off and on the e-box. - . Check that no other program uses the camera (e.g. the Smartview program). # **More System Functions** # 10 More System Functions This chapter describes advanced functions and features of the iView X system, sorted in alphabetical order. # 10.1 Advanced Eye Image Adjustment If it is difficult to track the pupil or the cornea reflex (CR), it may be necessary to adjust the <u>tracking parameters</u> [380] of the eye tracker. Click on the *Tracking* button in the eye control [372]. ### Improve CR tracking If the CR cross-hair jumps, try to reduce the maximum distance between pupil and CR. Therefore, go to the Rejection and decrease the reflex pupil distance. ## Improve pupil tracking If the pupil cross-hair jumps, go to the <u>Rejection [383]</u> tab and try to increase the pupil density, so more objects with a lower density will be rejected. # Generally reduce false positives If there are false positives tracked around the pupil that cannot be get rid of otherwise, try to reduce the area of interest, in which the tracker tries to find the pupil and the CR. Therefore, go to the AOI be tab and reduce the area size by using the sliders. Always check the results by observing the cross-hairs in the eye image. # 10.2 Analog Gain/Offset Calibration This option is available only if iView X has been configured with the <u>Analog Out option 483</u>. The analog gain/offset calibration method is provided for compatibility with analog data collection systems such as those used with scleral search coil based (SSC) eye tracking systems. This method is useful if the subject population is not entirely cooperative (ie non-human primates) or has limited ability to fixate or see targets. This calibration method allows the manual setting of output voltage offset and gain for each channel of eye movement data. There are several ways to accomplish Direct Analog (Gain/Offset) calibration, depending on the scope of the experiment. The most common is presented here. # Preparation It is assumed that the eye camera is setup on the test person with adequate tracking of the pupil and (if used) cornea reflex. Each analog output channel should be properly connected to the input channels of the data collection device. These directions will work with a number of SMI systems, including: iView X Hi-Speed, iView X Hi-Speed Primate, iView X RED, iView X MEG, MRI-LR/SV. # **Direct Calibration Setup** Under the 'Setup [316] menu, choose 'Calibration [342]'. From the 'Setup Calibration' window, select 'Direct Analog (Gain & Offset)' and choose 'ok'. ### **Analog Output Setup** In the <u>Setup Hardware [317] Communication [318]</u> dialog click on <u>Config [336]</u> in the **TTL IO/Analog Out** section. In the **Analog Out** window, select channel definitions for each of the four output channels. The direct calibration method requires 'Gaze' output. 'Data Range' cannot be adjusted. If running in monocular mode, only select the data sources that correspond to the selected eye. Note: Assign each data source only once to one channel, even if you are not using all four channels. Example: 'Gaze X (Right)' should only appear once in the data source list. The voltage range for output can be adjusted via 'voltage range'. Horizontal and vertical output channels can be inverted via check boxes on the right (default origin is upper left corner; X voltage increases when test person looks to the right, Y voltage increases when test person looks down). To test the output connection, click the 'start' button under 'Run Test Output' to generate a -5, +5 square wave. For purposes of these directions, we assume the following channel mapping: Channel 1 - Gaze X (right eye) Channel 2 - Gaze Y (right eye) Channel 3 - Gaze X (left eye) Channel 4 - Gaze Y (left eye) #### Data Range Setup On the <u>Calibration Configuration [387]</u> window, select the 'Ranges' button. This window selects the gain and offset range that can be adjusted during the calibration process. Offset and Gain ranges should be set to give maximum sensitivity in the next several steps, while allowing enough working range to deal with each test person. If range is set too narrow, the gain and offset sliders will not allow enough of a change to get desired output. If range is set too wide, the sliders will be too sensitive to fine-tune output. Note: Some experimentation is required to determine a good working range for each particular system. The values listed above may serve as a starting point. Once a good range is selected, it should work for all test persons for this particular system configuration. ### **Subject Calibration** The <u>Calibration Configuration [387]</u> window is used to set offset and gain for the eye movement channels. Note: Output voltage will remain at minimum (-5,-5 in this example) until any one of the Offset sliders is moved for the first time. At that point you will see live gaze output on your oscilloscope. The following steps will calibrate a test person: - Have the test person look at the center of the screen. Adjust the channel 1 OFFSET slider until the output for that channel is horizontally centered on the scope. This will define the center of the horizontal output range when the test person is looking at the center of the screen. - Adjust the channel 2 OFFSET slider until the output signal is centered vertically. This will define the center of the vertical output range when the test person is looking at the center of the screen. The output signal should now be displayed in the center, while the test person is looking at the center. - With the output centered, click the "Center R" button to define the center of the screen for the first two channels. All gain values will now be applied to this defined center. - 4. Repeat this process for Channels 3 and 4 to center the other eye. When complete, click the "Center L" button. - Have the test person look at a point in the corner of
the useful part of the stimulus. This can be accomplished with a static target in the corner or a moving target that oscillates in and out of a corner. - 6. Adjust the GAIN sliders for Channels 1 and 2 so that the expected output range is visible when the test person looks at points at the edge of the screen. If adjusted properly, the output should be centered when the test person looks at the center, and at the maximum expected value for Channel 1 when the test person looks at the far right or left and Channel 2 at the far top and bottom. - 7. Repeat the gain process for Channels 3 and 4. If necessary, gain can be adjusted at any time during the test. If Offset is changed, remember to click the "Center L" and "Center R" buttons in order to reset the center of the screen. Some experimentation with this process might be necessary to find the easiest method for your particular setup and subject population. Contact your SMI representative for more information. # 10.3 Area of Interest (AOI) The Area of Interest (AOI) feature allows you to create objects within the scene view for real-time I/O signal generation. The eyetracker performs an online analysis and detects, whether the gaze data enters or leaves an AOI. This is useful if you wish to setup gaze-contingent changes in the stimulus display or trigger some other research device by the test person's gaze position. The status of the AOI is sent as an TTL signal to a corresponding output channel. See also: TTL Output [335]. If you do not know how to draw an AOI see How to draw an AOI on a stimulus image 409. If you like to interact with iView X, e.g. if you need an interactive display, see also the section on $\frac{1}{2}$ Interfaces $\frac{1}{2}$. More on loading and saving AOIs see: Save AOI 311) Open AOI 310) You can show and hide AOIs by right-clicking on the scene view and check *Show AOIs*. There is an extra AOI Configuration [388] window in the View [367] menu, which helps you to edit AOIs. Note that this has nothing to do with the AOI of the eye image 382. # 10.3.1 How to draw an AOI on a stimulus image - 1. A scene image must be loaded into the scene window. Go to the File menu, choose Open Scene Image and browse to the appropriate BMP file. Typically this will match or approximate the image the test personis looking at. - 2. On the iView X workstation, the mouse cursor will change to a pen when hovering over the scene bitmap. This pen will draw an AOI around the area you wish to identify. - 3. To see more options you can activate the AOI Configuration view (from the View menu click on 'AOI Configuration') - 4. Select if you want to draw a polygon, rectangle or ellipse. - 5. Double-click left within the scene image to mark the starting point of the AOI. - 6. If 'polygon' is selected, single-click left to create a another corner of the polygon. - 7. Double click left the mouse button to mark the last corner point. The corner points of the polygon will be automatically connected. Finally you will be prompted for a name and color of the AOI. To change the size of the AOI **Note:** Areas of interest can only be drawn on a stimulus image, not on the scene video. #### Related topics: What are AOIs? 408 AOI Configuration 388 # 10.4 Audio Recording Audio signals coming from a microphone can be recorded together with the video signal. The audio signal is multiplexed with the video stream. As part of the video recording the audio recording will be started and stopped together with the video recording. ### **Enabling Audio Recording** To enable Audio Recording go to <u>Setup-Hardware [317]</u> and click on <u>Advanced [326]</u>. If the system supports Audio Recording you will find an audio recording check box that needs to be checked. ### Connecting Before you work with iView X Audio Recording, make sure you have a microphone and speaker connected to your iView X workstation and that they are working properly. # **Testing** To check that everything is working we recommend to try to record a voice with the *Sound Recorder*. You will find this tool in Windows under *Start - Programs - Accessories - Entertainment - Sound Recorder*. # Recording Record your video data as usual with iView X. The sound will be automatically recorded together with the video. If you play back the video you should hear sound, too. ### More Help See the <u>Audio FAQs section [41]</u> and the <u>Audio Setup Guide for WinXP [413]</u> for more help. ### 10.4.1 Audio FAQs section #### Topics: - How do I test Sound Recording? [411] - I tested with Sound Recorder, but I do not hear anything [412] - I have recorded a video, but I do not hear anything 412 - I hear a lot of background 'hiss' 413 - Where do I find the Audio Device Properties of my System? [413] Back to Audio Recording 410. # 10.4.1.1 How do I test Sound Recording? To check that everything is working we recommend to try to record a voice with the *Sound Recorder*. The Sound Recorder is a tool that comes together with your Windows operating system. Usually, it can be found under *Start - Programs - Accessories - Entertainment - Sound Recorder*. ### Follow the steps: Click on the Windows Start button. Continue to the Programs section of the Start menu. Continue to the Accessories section of the Programs menu. Continue to the Entertainment section of the Accessories menu. Click on the Sound Recorder item. The Sound Recorder panel will appear. Try to record your speech though the microphone you use. Play it back. If you can't hear your recording, go to the *Sounds and Audio* section of the Control Panel and play with the microphone settings until the recording test works for you. See also the <u>Audio Setup Guide for WinXP</u> [413]. Back to Audio Recording 410. # 10.4.1.2 I tested with Sound Recorder, but I do not hear anything Make sure you have a microphone and speaker connected to your iView X workstation. If you cannot hear anything, check and adjust the audio device properties of your iView X workstation. Make sure that output sound is not muted. Your can find more info in the Audio Setup Guide for WinXP 413]. Back to Audio Recording 410. # 10.4.1.3 I have recorded a video, but I do not hear anything Check if the video contains any audio data. Right-click on the video file, which opens the video file properties. In the 'Fileinfo' tab you should find a 'Bitrate' and an 'Audioformat' additionally to the 'Length' of your video. If not, no audio was recorded. If, however, you find the audio information, and do not hear anything, check and adjust the audio device properties of your iView X workstation. Make sure that output sound is not muted. Your can find more info in the <u>Audio Setup Guide for WinXP [413]</u>. Back to Audio Recording 4101. # 10.4.1.4 I hear a lot of background 'hiss' Obviously, background noise is amplified too much. To reduce this effect, you can play with the microphone settings until the recording test works for you, as follows: Open the sound and audio device properties 413. Go to the Audio tab, click the microphone volume button and reduce the Mic-in volume to an acceptable level (about 10-20% of the scale). Set the output volume to about 50-70%. Back to Audio Recording 410. # 10.4.1.5 Where do I find the Audio Device Properties of my System? The audio device properties can be found at slightly different places, dependent on the Windows version. In Win XP you will find it under: Start - Control Panel - Sounds and Audio Devices - Volume, Audio and Voice tab Back to Audio Recording 410. # 10.4.2 Audio Setup Guide for WinXP Please note that the following set of instructions may be different for some users due to their audio software/ hardware manufacturer, the installed OS version and the chosen windows style. ### How to get to the Audio Settings Click on the *Start* button and continue to the *Control Panel* section of the Start menu: The Control Panel window will appear. In the Control Panel window find Sounds, Speech, and Audio Devices section, and click on it. The Sounds, Speech, and Audio Devices window will appear In the Sounds, Speech, and Audio Devices window find the Sounds and Audio Devices section, and click on it. The Sounds and Audio Devices panel will appear. Find the Audio section tab (top line of buttons), click on it. The Audio Settings section will open. ### **How to change Playback Options** The following describes to setup the system, so you can hear anything. In the Sound Playback section from the drop down menu, select the device that the iView X workstation uses. Click on the Volume button below the drop down menu. The *Volume Control* panel will appear. Find the *Options* menu button, click on it. Click on the *Properties* section. The Properties panel will appear. Find the Show the following volume controls: section. Select all by checking all the unchecked boxes. Click the OK button. Make sure that *Microphone* volume controllers for playback are muted in the *Volume Control* panel (not available on all systems). All the other volume controllers should be unmuted. Open the Options menu, click on Exit section. # **How to Change Recording Options** The following describes to setup the system, so you can record anything by using the connected microphone. Find the *Sound Recording* section of the *Sounds and Audio Devices* panel. In the *Sound Recording* section from the drop down menu, select the device that the iView X workstation uses. Click on the *Volume* button. The Recording Control panel will appear. Click on the Properties section of the Options menu. The Properties panel will appear. Find the Show the following volume controls: section. Select all by checking the unchecked boxes. Click the OK button. Make sure that *Microphone* volume controllers is checked in the *Recording Control* panel. Find the Options menu, click on it. Make sure that the Advanced Controls section is checked, if not check it. Find the *Advanced* button under the *Microphone* volume controller, click on it.
The Advanced Controls for Microphone panel will appear. Find the Other Controls section. Normally, ${\it Microphone~Boost}$ should be unchecked. If sound quality is not satisfying, you might try to check it again. Click the Close button. In the Recording Control panel find the Options menu button, click on it, click on Exit section. Now you can test the Sound Recording [411] capabilities. Back to Audio Recording 410. # 10.5 Background Operation Mode iView X can be started with command line parameters as a background task. Therefore you need a predefined setup file. See save a configuration 367 to get a setup file. iView X will run as a background process with the following command: <path>\iviewx.exe -b <name>.ivs #### where <path> : path to the iView X program -b: left tells iView X to operate as a background process <name>: name of configuration file The iView X icon will appear in the tray status bar of windows. Right clicking the icon allows you to bring up the maximized iView X window. # 10.6 Binocular mode Binocular mode is an option for <u>Hi-Speed [191]</u> systems with an appropriate <u>configuration [322]</u>. In binocular mode all diagrams and exports will show data for both eyes. # 10.7 Eye Image Recording for Quality Evaluation Eye images can be recorded during a RED 165 calibration. ## Enabling To enable this feature go to the <u>Setup[316]</u> menu, click on <u>Output[354]</u> and choose the <u>Recording Options [355]</u> tab. Check the *Eye Image Recording (Debugging)* checkbox. #### **Remote Command** This feature can also be enabled with the ET EQE 4941 command. ### Storing If this feature is enabled, eye images will be saved in the *eyelmages* subfolder in the installation directory of iView X. # 10.8 Eye Video Recorder To start the eye video recorder you have to press Ctrl+Shift+F3. With the eye video recorder you can record the eye video image, which is displayed in the Eye Control [372]. #### **RAM or HDD** The data can be either recorded into RAM or directly to HDD. For Hi-Speed data with a sample rate of 500 Hz or higher it is recommended to record the data first into RAM, and in a second step save the RAM contents to hard disk. # The recording buttons | Start recording, either to RAM or to HDD. | |---| | Stops recording. | | Saves the recorded data to hard disk. Not available if directly recorded to HDD | | Deletes recorded data from the RAM. Not available if directly recorded to HDD. | #### Video Format The following recording formats are available: | JPG | Single pictures are taken and saved in .jpg format. | |---------------------------|--| | BMP | Single pictures are taken and saved in .bmp format. | | XVID
HUFFYUV
ALPARY | A live video is recorded with the codec specified. The video can only be played if the appropriate decoder is installed on the PC. | | XMP4 | A live video is recorded. The codec is an optimized SMI video codec, which is compatible with Xvid and DivX. | #### **Buffer Size** Limit the recording by adjusting the slider. The recording will stop automatically, if the maximum recording time is reached. Only available if recording to RAM is used. #### **Buffer Fill Level** Shows fill level of RAM buffer. Only available if recording to RAM is used. ### **Storing** The resulting files are saved in the *eyelmages* subfolder in the installation directory of iView X. # 10.9 Loading a setup file iView X can be started with a setup file as a command line parameter. To do so first start iView X in normal mode, configure everything as needed, then save a configuration [367]. The configuration will be saved in a file with the extension .ivs. To start iView X with the saved setup use the following command: <path>\iviewx.exe <name>.ivs #### where <path> : path to the iView X program <name>: name of configuration file # 10.10 LPT Port Address Setup iView X[™] can send and receive digital trigger signals using the LPT parallel port. If you want to send trigger signals to iView X™, see Parallel Input. 4791 iView X[™] can send trigger signals, every time the gaze enters an <u>Area of Interest (AOI)</u> 408, see <u>Parallel Output.</u> 480 ## Connecting Before you can use the LPT port, make sure that your iView XTM workstation has an LPT port adapter installed. iView XTM has to be told the LPT port adapter address. To set the LPT port address go to <u>Setup-Hardware [317]</u>, then to the <u>Communication [318]</u> tab. Set *TTL IO / Analog Out* to **Lpt IO** and click on <u>Configure [333]</u>. The TTL input dialog box will open and the address has to be entered in the *Parallel Port Address* field: The parallel port address must be entered in hexadecimal format. The LPT port address varies due to the manufacturer of the LPT port adapter. #### Reset If you click on the reset button, the default address 378 (hexadecimal) is set. ## How to find the LPT port address of the iView X workstation The section <u>How to find the LPT port address [432]</u> is a step-by-step description, how you can find the LPT port address of the installed LPT port adapter. # 10.10.1 How to find the LPT port address Please note that the following set of instructions is only an example and may be different for some users due to the LPT card driver/hardware manufacturer, the installed OS version and the chosen windows style. Click on the *Start* button and continue to the *Control Panel* section of the Start menu: The *Control Panel* window will appear. In the Control Panel window, if you have the classic view, find the *System* icon and double-click on it. The System Properties panel will appear. Find the Hardware section tab (top line of buttons), click on it. The Hardware section will open. Click on the Device Manager button. The *Device Manager* panel will appear. Click on the plus next to *Ports (COM & LPT)* to expand the tree. Find the LPT port adapter of the system. Note that the label will vary according to the manufacturer and type of the adapter. In our example the manufacturer is "MosChip" and the type is "PCI Parallel Port": Right-click on the adapter label to open a context menu and click on *Properties*. The adapter properties panel will appear. Find the Resources tab, click on it. The Resources section will open: The LPT port address in question is the first value, i.e. start address, of the I/O Range. In our case it is "CCE8". This is the hexadecimal value that iView X needs to communicate with the LPT port. # 10.11 Messaging with BeGaze BeGaze™ is a behavioural and gaze analysis software for eye tracking data. ## **Separation into Trials** When BeGaze loads IDF files, it separates the data stream into single trials. As a trial separator BeGaze uses certain image messages. If the IDF file does not contain image messages, BeGaze uses the <u>trial number</u> [313]. ### **Image Messages** The image message must have a specific format to be interpreted by BeGaze as a *Data trial Separator*. The image message should be the filename or the full path name of the image, including extension. The following file formats are supported: **bmp**, **jpg**, **jpeg**, **png**. Make sure the filename or path name contains one of the supported extensions. When sending the following to iView X: ``` ET_REM "<image name>" ``` iView X generates the following message in the data file: ``` <Timestamp> MSG <TrialNumber> Scene Image: <image name> ``` where <Timestamp> is the time when the command was sent. ## Example: ``` ET_REM "C:\images\my image.bmp" ``` #### Result: ``` 28437864110 MSG 1 Scene Image: C:\images\my image.bmp ``` The generated message line will be used by BeGaze to generate a trial separation. #### Use with PresentationTM When using Presentation just use the send_string("<image name>") command. The Presentation to iView X interface adds "ET_REM" to the string automatically. For more information on BeGaze refer to the BeGaze manual. See also Message Output Format 305. # 10.12 Mouse mode In mouse mode eye movements are simulated by mouse movements. This option is useful in the experimenter's preparation phase, where measurements on real test persons are not yet needed. In mouse mode calibration is not possible and the camera view is disabled. In mouse mode you can simulate - data of left eye, right eye or both eyes, - blinks - noise - various sampling rates and set a pupil diameter. To switch to mouse mode do the following: - 1. Go to Setup 316 Hardware 317. - 2. Select under Eye Tracker Custom. - 3. Select under Video Grabber Mouse. - 4. Click on the Advanced 324 button to configure mouse data output. After you have accepted all entries with OK and left the dialogs, the eye tracker control [372] is replaced by a mouse control [377]. # 10.13 RED Tracking Monitor For SMI Remote Eyetracking Systems it is useful to have a tracking monitor. It can help to place the subject in front of the eyetracker. The SMI eyetracking software *iViewX*TM RED 165 and stimulus software *SMI* Experiment CenterTM already contain a tracking monitor. This chapter describes the necessary steps and calculations to create a tracking monitor in custom software. ## **General Setup of iViewX** iView X can be controlled from client software via remote commands. iView X and the client software use UDP as communication layer. Both, iView X and the client, have to be configured to use the proper communication setup. Please refer to the iView X manual. UDP datagrams are used for remote commands and for data samples as well. Data samples are transferred as configurable string. # **Remote Command Usage** The client Software uses the following commands to control the data streaming: Set streaming format: ET FRM <Parameter> To calculate the eye position for RED systems you need to know: - Pupil position (PX and PY) relative to the
camera coordinate system - Eye Distance from Device Center (EZ) relative to eye tracker ### For example: ET_FRM "%PX %PY %EZ" #### Start Data streaming: ET_STR <sample rate> #### For example: ET STR 50 #### Calculations After sending a ET_FRM and ET_STR command iView X starts sending ET_SPL datagrams to the client. The ET_SPL format depends on the used ET_FRM command. In the sample case (ET_FRM %PX %PY %EZ) you will get datagrams like this: ET_SPL PX(left) PX(right) PY(left) PY(right) EZ(left) EZ(right) The pixel values of PX and PY are multiplied by 32. EZ is denoted in millimeters #### For example: ET SPL 17941 17489 19062 19004 622.481 624.617 ## For the sample this means: | Step 1 – Parsing the ET_SPL | Left_Eye | Right_Eye | |-----------------------------|--------------------|--------------------| | X | 560 px (17941/32) | 546 px (17489/32) | | Υ | 595 px (19062/32) | 594 px (19004/32) | | Z | 62 cm (622.481/10) | 62 cm (624.617/10) | As the origin of the pupil is the top right corner you have to translate the points (to left): ``` Left_Eye_X'=CameraWidth-Left_Eye_X Left_Eye_Y'=CameraHeight-Left_Eye_Y Right_Eye_X'=CameraWidth-Right_Eye_X Right_Eye_Y'=CameraHeight-Right_Eye_Y ``` The Camera width (px) and height(px) depend on the used eye tracking system: | Device | Camera Width (px) | Camera Height (px) | |--------|-------------------|--------------------| | RED 4 | 1388 | 1038 | | RED 5 | 1280 | 1024 | For the sample this means: | Step 2 - Translation | Left_Eye' | Right_Eye' | |----------------------|-------------------|-------------------| | X | 720 px (1280-560) | 734 px (1280-546) | | Υ | 429 px (1024-595) | 430 px (1024-594) | | Z | 62 cm | 62 cm | # Visualization of the eye position tips Now you can draw the eye position. The size of the drawn "tracking rectangle" depends on the camera height (px) and camera width (px). The size of the drawn eye depends on the distance. To simplify the drawing you can ignore the right eye values. Right_Eye".X=Left_Eye'.Width/0.75 Right_Eye".Y=Left_Eye'.Y Right_Eye".Z=Left_Eye.Z Right_Eye".Width = Left_Eye'.Width Right_Eye".Height = Left_Eye'.Height ## For the sample this means: | Step 3 – Simplify Eye position | Left_Eye' | Right_Eye" | |--------------------------------|--------------------------|---------------------------------| | X | 720 px | 903 px (720
+((620/6)/0.75)) | | Υ | 429 px | 429px (from left eye) | | Z | 62 cm | 62 cm (from left eye) | | Width | 136 px (240-
(620/6)) | 136 px (from left eye) | | Height | 91 px (136/1.5) | 91 px (from left eye) | For drawing "placement suggestions" (arrows) please note the table below: Even if a value is smaller or higher as the border value you can draw corresponding arrows. | Device | optimal X Range | optimal Y Range | optimal Z Range | |--------|-----------------|-----------------|-----------------| | RED 4 | 360 px-1027 px | 269 px-768 px | 62 cm - 75 cm | | RED 5 | 332 px-947 px | 262 px-757 px | 60 cm - 72 cm | # 10.14 Timing of Stimulus and Eyetracker Events iView X can be notified by stimulus presentation programs on which image is currently presented. The time of the notification will be stored in the iView data file. What happens between a stimulus change notification and an eye tracker event and how much time will pass? The above figure will give an overview. - (1) The stimulus presentation software sends a command to the eyetracker, when a new image is displayed. The eyetracker receives the command and timestamps it within the display refresh rate (typically 10-17 ms for 60-100 Hz). - (2) The test person needs a reaction time, before the eye starts to move. The reaction time may vary and will depend on the type of experiment. - (3) When the eye starts to move the image is grabbed and processed by the eyetracker within 2-3 samples. (4) After the processing period the eyetracker provides eye position information, which is immediately available to the stimulus software. # 10.15 Tools This chapter gives an overview of optional tools that may accompany iView X. Note that **IDF utilities** are covered in a separate chapter 285. ### 10.15.1 Remote Console Remote Console is a useful tool to test the ethernet connection. See section MOleonto-live for details on how to use ethernet connection with iView X. On first start up the following window will be presented: **Listening Interface:** Set the address of the computer on which this program is running. If you do not know the address, click on the drop down button to see a list of choices. If your computer has been already assigned an own address, it will be listed here together with a default address (127.0.0.1). If in doubt ask your network administrator. **Target Interface:** Set the address of the iView X workstation. **Port:** In both cases port should be an unused port between 1024 and 65535. Ports between 0 and 1023 are reserved. This is the main window: ### 10.15.2 Remote Video The eye and scene video of iView X can be transferred over network to a remote client PC. On the client PC the *Remote Video* tool is to be installed, with which you can see the eye and scene video. The remote client PC is normally used to display a stimulus. The *Remote Video* tool enables you to setup the iView X eye and scene video while sitting in front of the stimulus PC. The iView X workstation and the stimulus PC has to be connected over network. #### **Main Window** If you start Remote Video on the client PC you get the following main window: The main window consists of a simplified eye control, similar to the iView X Eye Control [372], and a scene video window. #### **Toolbar** The three buttons at the top mean the following: opens network configuration dialog starts eye video transfer starts scene video transfer ### First Steps To adjust eye and scene video do the following: - Setup your iView X system and the cameras, so the eye camera is directed at the test person's eye and the scene camera observes the scene in the test person's view of vision. iView X should be up and running on the iView X workstation. - 2. Start Remote Video on the remote PC. - 3. Click on the network configuration button Setup network connection [448] of the remote PC. - 4. Setup network connection 329 of iView X. - 5. Click on the *start eye video* button and the *start scene video* button to start data transfer. - 6. Setup pupil and CR threshold 448 while observing the eye video. ## **Pupil and CR Threshold** Detection thresholds for pupil and corneal reflex (CR) can be set as follows: Move the pupil slider until a white cross-hair is visible in the eye control. The center of the cross-hair should be the center of the pupil. Move the reflex slider until a black cross-hair is visible in the eye control. The center of the cross-hair should be the center of a bright dot near the center of the pupil. *Dynamic Threshold*: If checked, the eyetracker automatically adapts the pupil threshold to slightly changing environments like small movements of the head, changing of light etc. ## **Network Configuration** If you click on the network configuration button , you get the following dialog: **Listening Interface:** Set the address of the computer on which this program is running. If you do not know the address, click on the drop down button to see a list of choices. If your computer has been already assigned an own address, it will be listed here together with a default address (127.0.0.1). If in doubt ask your network administrator. **Send UDP packets to Interface:** Set the address of the iView X workstation. **Port:** In both cases port should be an unused port between 1024 and 65535. Ports between 0 and 1023 are reserved. #### 10.15.3 WinCAL WinCAL is a program to visualize calibration targets. It can be used to calibrate the iView X eyetracker. Typically, it will be installed on a different stimulus PC and be remotely controlled by the iView X eyetracker workstation. See also Calibrating with WinCAL 691. For more details, please refer to the WinCAL Documentation. # 10.15.4 Surveyor The *Surveyor* software tool controls devices to measure the position and attitude of planes in a 3-dimensional space. It is used to survey the measurement model in <u>HED-MHT Experiments</u> 1001. Saves data to *planes*. *ini* and *iview ini* # 10.16 Video Streaming This chapter describes the necessary steps to set up client software that receives iView X is capable of streaming eye and scene video to a remote client. Both types of streams can be configured separately. iView X and the client software use UDP as communication layer. Both, iView X and the client, have to be configured to use the proper communication setup. How to connect a client software to iView X via UDP see Network Connection to iViewX 60. UDP datagrams are used for remote commands and for video transfer as well. Eye and scene video are transferred as images frame by frame. Eye image data is MIME encoded. Scene Image data is compressed as JPEG and transferred in a binary format. Read more in Eye Video Streaming 511। Scene Video Streaming 514। # 10.17 WLAN connection The following describes how to setup a direct ad-hoc WLAN connection between two computers. WLAN over a wireless access point will not be covered here. Once a WLAN connection is established, you can setup a TCP/IP connection between a program on a remote PC and iView XTM in the same way as you would do with an ethernet (cable-based, not-wireless) network. Due to delay issues it is not recommended to use WLAN to connect a remote stimulus program to iView X. For a **stimulus program** connection and synchronization with iView X use a **direct ethernet connection through a CAT 5 crossover cable** instead. # 10.17.1 Ad-hoc WLAN Setup Guide for WinXP Note that the following set of instructions may be different for some users due to their OS version and the chosen windows style. ## **Steps for both PCs** - Activate WLAN in BIOS: If the WLAN device is built in,
make sure it is enabled in the BIOS. (If you are not sure about it, ask your IT-Specialist, how to do it.) - Switch on WLAN: The WLAN device has a switch. In built-in systems there should be a switch at the computer case, which you have to set to the ON position. If it is on and if your PC (or laptop/tablet) has a small control display, there should appear a sign next to the battery status, indicating that WLAN is activated. # Steps for the first PC Choose one PC as the first. It does not matter, which. 3. Click on the *Start* button and continue to the *Control Panel* section of the Start menu: The Control Panel window will appear. In the Control Panel window find Network Connections and click on it. 4. Right-click on Wireless Network Connection, go to Properties. - 5. Go to the Wireless Networks tab. - 6. Check Use Windows to configure my wireless network settings. - 7. Click on Add. - 8. Write a network name. - 9. Uncheck The key is provided for me automatically. - 10. Write a network key, which you have to remember. - 11. Check This is a computer-to-Computer (ad hoc) network. 12. Click on OK. - 13. Go to the Advanced tab. - 14. Click on Settings. #### 15. Set firewall to OFF. - 16. Accept all changes with *OK* and close all windows, so you see the window *Network Connections* again. - 17. Left-click on Wireless Network Connections. - 18. Click on Refresh network list. - 19. Wait a while until your network with the name from step 8 is seen. - 20. Double-click on it. - 21. Enter the network key from step 10. 22. Click on connect. 23. Wait a while, at least a couple of minutes, until status is Connected. # Steps for the second PC 24. Open Control Panel and click on Network Connections. 25. Left-click on Wireless Network Connection. - 26. Repeat steps 18. 23. - 27. Both PCs show the Connected status. Now both PCs are connected via the network you have just created. Both computers have created IP addresses automatically. When connecting iView X with a remote application, make sure to select these automatically created IP addresses. # **System Interfaces** # 11 System Interfaces This chapter gives an overview of all currently used system interfaces. The section PC Boards 462 deals with all boards and its connectors that can be used with the iView X system. The section <u>I/O interfaces</u> 474 covers all possibilities for iView X interaction with other devices. The <u>remote command[483]</u> interface is a set of commands, with which iView X can be remotely controlled by other computers. # 11.1 PC Boards Dependent on the used eye tracking system various PC boards may be integrated into the iView X workstation. This chapter gives an overview of the boards with its various connections. #### 11.1.1 Falcon Board For safety reasons do not connect or disconnect any components while the iView X computer is turned on! The Falcon board is the eyetracker frame grabber card. The video out connectors of the MRI [240] camera should be connected to one of the three connectors on the Falcon board. After having connected everything, you have to tell the iView X system the current configuration. To do so go to the <u>Setup[316] Hardware[317]</u> dialog. Go to section **Eye Tracker** and select **Falcon** board. Also click on the <u>Advanced[321]</u> button to set the video input accordingly. #### 11.1.2 Grablink Board For safety reasons do not connect or disconnect any components while the iView X computer is turned on! The Grablink board is the eyetracker frame grabber card for Hi-Speed 191. The data transmission is digital and, thus, lacks the quality losses typical for analog signal transmission. One end of the *CamLink and power supply cable* must be connected to the camera, the other end to the CamLink interface of the Grablink board. See also <u>Hi-Speed wiring</u> [203]. After having connected everything, you have to tell the iView X system the current configuration. To do so go to the <u>Setup</u> Hardware Hardware dialog. Go to section **Eye Tracker** and select **Grablink** board. Also click the <u>Advanced</u> 22 button to set the video input accordingly. ### 11.1.3 MPEG/Vidac Board For safety reasons do not connect or disconnect any components while the iView X computer is turned on! The MPEG Vidac board is an mpeg recording card with the following connectors: - 2x S-Video In - Audio In, 3.5 mm stereo cinch Older versions may have a *Video In Composite* connector. If you upgrade iView X to a newer version, this board must be upgraded as well. In current version only one *S-Video In* may be used. The second connecter is covered: The video out connector of the scene overlay card should be connected to the not covered S-Video input connector of the Vidac Board. After having connected everything, the iView X software must be told the current configuration. To do this go to the <u>Setup[318] Hardware [317]</u> dialog. Go to section **Scene Video Compression** and select **Vidac**. Currently recording time is limited to 2 h. # 11.1.4 EyePC Board For safety reasons do not connect or disconnect any components while the iView X computer is turned on! The EyePC connectors are two female cinch plugs and one HD-SUB 44 female. Video In should be connected to the video output of the eye camera. *Video Out* should be connected to the red cinch connector of the Screen Machine cable. Trigger In is an optional connector for trigger signals. For further details please refer to the EyePC Installation Manual. # 11.1.5 Digital I/O Board For safety reasons do not connect or disconnect any components while the iView X computer is turned on! The Digital I/O card has 6 ports with 8 pins each, which means a total of 48 channels. The card has two connectors, one is at the front of the card, and one is at the rear side. iView X has 16 output and 16 input channels. The following describes the pin assignment. # External 37-pin D-Sub female connector The front external connector can be accessed by plugging in a 37-pin male connector. The 37-pin connector contains three ports, port 0, 1 and 2. The pin assignment is as follows: Port A (**PA**) = Port 0 = iView Out Port B (**PB**) = Port 1 = iView Out Port C (**PC**) = Port 2 = iView In GND = Ground Port A and B is used for output signals, port C for input signals. ### Assignment iView Out | Pin No. | iView Channel
No. | iView I/O | |---------|----------------------|-----------| | 37 | 0 | Out | | 36 | 1 | Out | | | ••• | *** | | 30 | 7 | Out | | 10 | 8 | Out | | | ••• | *** | | 3 | 15 | Out | ### Assignment iView In | Pin No. | iView Channel
No. | iView I/O | |---------|----------------------|-----------| | 29 | 0 | ln | | 28 | 1 | ln | | | | ••• | | 22 | 7 | ln | |----|---|------| | | | 11.1 | # Internal 50-pin flat cable connector The internal 50-pin connector can only be accessed from the inside. It also contains three ports, port 3, 4 and 5. The pin assignment is as follows: Port A (**PA**) = Port 3 = iView In Port B (**PB**) = Port 4 = not assigned Port C (**PC**) = Port 5 = not assigned GND = Ground Port A is used for input signals. ### Assignment iView In | Pin No. | iView Channel
No. | iView I/O | |---------|----------------------|-----------| | 47 | 8 | ln | | 45 | 9 | ln | | | | | | 33 | 15 | ln | # **Jumper settings** The jumpers determine for each port, if they are set to high (5V) or to low. If the jumpers are set to 1-2, port is set to high. If the jumpers are set to 2-3, port is set to low. By default, the jumpers are set to 2-3, so port is low. The default settings need not be changed in normal applications. ### Jumper-Port assignment | Port no. | Jumper | |----------|--------| | 0 | JP2 | | 1 | JP3 | | 2 | JP4 | | 3 | JP5 | | 4 | JP6 | | 5 | JP7 | # **Related topics** Input via Digital I/O card 481 Output via Digital I/O card 481 ### 11.1.6 Analog Out Board For safety reasons do not connect or disconnect any components while the iView X computer is turned on! # **PIO-DA4 Board** The PIO-DA4 board is a combined digital I/O and analog out board. # **Analog Out PIN Assignment CON3** The PIO-DA4 board CON3 is connected to a cable that provides 4 analog voltage output (VO) channels which can be assigned in the <u>Analog Output Configuration [336]</u>. The board provides also current output (CO). # Digital I/O PIN Assignment: TTL output (DO) is provided at CON1, while TTL input (DI) is to be connected to CON2. CON1 and CON2 are led to a 37-pin D-Sub female connector with the following assignment: ### **PIO-DA4 Resolution & Pin-Out** ### The resolution of each range is given as follows | Configuration | Equivalent bit | Resolution | |---------------|----------------|------------| | -10 ~ + 10V | 14bit | 1.22mV | | 0V ~ + 10V | 13bit | 1.22mV | | -5V ~1 5V | 13bit | 1.22mV | | 0V ~ +5V | 12bit | 1.22mV | | 0mA ~ 20mA | 13bit | 2.70µA | | 4mA ~ 20mA | 13bit | 2.70µA | #### Related topics: Analog Out Option 483 Analog Output Configuration 336 # 11.2 I/O Interfaces iView X is capable of interacting with other computers by using various input/output options. This is useful if you want to synchronize 3rd party stimulus software with iView X There are several ways to communicate with other devices: ### **Trigger Signals** Trigger or TTL signals can be send or received through various interfaces. See <u>Trigger Signals</u> 475. ### **Serial COM port** Serial Input 478 Serial Output 479 # Parallel LPT port Parallel Input 479 Parallel Output 480 #### Digital IO card Input via Digital I/O card 481 Output via Digital I/O card 481 #### Ethernet Ethernet Input 482 Ethernet Output 482 #### Analog out card Analog Out Option 483 # 11.2.1 Trigger Signals #### Interfaces iView X is capable of receiving TTL signals through - Parallel Input 479 or - Input via Digital I/O card 481). Depending on the interface iView X may receive up to 16 TTL signals on 16 lines at the same time. ### Shape To be recognized as a trigger signal, the signal should comply with a certain shape 476. # Trigger Signal in IDF
file The trigger signals will be timestamped and recorded in the <u>IDF file</u> 285]. In the IDF export the trigger signals will build an additional *Trigger* column. The *Trigger* column will be exported, if you select *Show Trigger* under **Misc. Data** in the Export Options 287. Additionally, you can select, if the trigger signals should be represented as *hexadecimal* or *decimal* values. #### **Trigger Signal Representation** The value in the *Trigger* column is either a *hexadecimal* or *decimal* numerical representation of the 16 lines of the digital input. #### **Remote Control with Trigger Signals** The TTL signal can actually trigger something in iView. You can configure that always when a certain pin changes its state a certain command will be invoked or a message be written to the IDF file. Through this mechanism it is possible to remotely control iView X through trigger signals. To configure this option go to <u>Setup</u>[316]-<u>Hardware</u>[317]-<u>Communication</u>[318]. The commands will be executed, if **Accept Trigger** is checked. Click on <u>Configure</u>[331] next to **TTL IO**. In this dialog you can also see the status of all 16 lines. Back to **I/O Interfaces** 474. ### 11.2.1.1 Trigger Signal Shape A trigger signal is an electrical low-voltage TTL signal. #### Possible states: Trigger high: 5 V Trigger low: 0 V #### **Duration:** The trigger signal should be at least 1.5 samples long depending on the used sample rate. Examples: | sample rate | min. duration | |-------------|---------------| | 50 Hz | 30 ms | | 240 Hz | 6 ms | ### 11.2.1.2 Trigger Signal Representation iView X can receive 16 TTL signals on 16 lines at the same time. The status of the 16 lines will be represented by a numerical value. You can choose, if iView X shows the value as a *hexadecimal* or *decimal* number. #### **Hexadecimal Representation** Each line can have a high or a low state (see shape 476). If high is represented as 1 and low as 0, a numerical representation for the status may be ``` 11111111111111111 ``` which, in this case, means that all lines are high. We call this a *binary* representation, because every place in this number can only take two values: 0 and 1. We can better grasp the number if we group it in parts of four places each: 1111 1111 1111 1111 We can then represent the four-number-group 1111 with only one number, which is capable to take $2^3 = 16$ values. For this reason we call it a *hexadecimal* number. It can take the following 16 values: 0...9, A...F, where A...F represents the numbers 10...15. We assume that, reading from right to left, X1 is the first place of the four number group, X2 the second place, X3 the third place and X4 the fourth place, then the conversion formula is: $$X1 + X2*2^1 + X3*2^2 + X4*2^3$$ In the above example the hexadecimal representation of the four-numbergroup 1111 is F and of the all-lines-high-state is FFFF, respectively. We can see that the hexadecimal number visually corresponds to the 16 lines of the digital input. #### **Decimal Representation** The number can be converted to a decimal number. We assume that, reading from right to left, H1 is the first place of the hexadecimal number, H2 the second place, H3 the third place etc. Then the conversion formula is: $$H1 + H2*16^{1} + H3*16^{2} + H4*16^{3}...$$ In our example FFFF hexadecimal equates to 65535 decimal. ### 11.2.2 Serial Input The serial interface of the iView X system can be used to remotely control iView X. Just send a command string over the COM port. To activate the COM port select RS232 in the Setup-Hardware 317 Communication 318 dialog under Remote. Go to the Config tab 328 to select COM port and speed. The remote control device can send a string via com port to iView X. Before iView X understands commands you first have to activate COM port reception by checking *Accept Remote Commands*. For an overview of available commands see Remote Command Reference You can test the serial port by using a terminal program, such as Microsoft's *HyperTerminal* to be found under *Start-Programs-Accessories-Communications*. Back to **I/O Interfaces** 474. ### 11.2.3 Serial Output iView X is capable of sending commands via COM port. Optionally eye data can be sent together with the commands. To activate the COM port select RS232 in the Setup-Hardware 317 Communication 318 dialog under Remote. Go to the Config tab 328 to select COM port and speed. As soon as the COM port is activated iView X starts sending command messages over the COM port, so the remote control device can interact. If you additionally want eye data being sent over the COM port you have to check *Stream Data*. For an overview of available commands see Remote Command Reference 484. You can test the serial port by using a terminal program, such as Microsoft's *HyperTerminal* to be found under *Start-Programs-Accessories-Communications*. Back to **I/O Interfaces** 4741. # 11.2.4 Parallel Input To activate the LPT parallel port select **Lpt IO** in the <u>Setup-Hardware [317]</u> <u>Communication [318]</u> dialog under **TTL IO / Analog Out.** Click on <u>Configure</u> <u>333</u> to set the LPT parallel port address [431]. ### Digital input The remote control device can send TTL trigger signals to iView X which are interpreted accordingly. Commands can be assigned to a trigger signal in the Configure 333 dialog box.. Note that not all available commands can be assigned, only those that are given in the dialog box. To activate trigger reception check *Accept Trigger*. See also Trigger Signals 475. For an overview of available commands see Remote Command Reference 484 Back to I/O Interfaces 474. ### 11.2.5 Parallel Output To activate the LPT parallel port select Lpt IO in the Setup-Hardware [317] Communication [318] dialog under TTL IO / Analog Out. Click on Configure [333] to set the LPT parallel port address [431]. #### **Digital output** For interaction iView X can send a TTL trigger signal every time gaze data enters an Area of Interest (AOI) 408. The signal is HIGH if the gaze position is inside of the AOI, and LOW if it is outside. To activate sending signals check Send Trigger. Eight lines of the LPT port are used as output as given in the following table: | AOI no. | pin no. | |---------|---------| | 1 | 2 | | 2 | 3 | | | ••• | | 8 | 9 | Back to I/O Interfaces 474. # 11.2.6 Input via Digital I/O card To activate digital I/O, a Digital I/O Board 466 must be installed. Select the IO card in <u>Setup-Hardware [317]</u> Communication [318] dialog under TTL IO / Analog Out. Up to 16 lines can be used as input. See also Trigger Signals 475. For an overview of available commands see Remote Command Reference 484. Back to I/O Interfaces 474). # 11.2.7 Output via Digital I/O card To activate digital I/O, a <u>Digital I/O Board 466</u> must be installed. Select the IO card in <u>Setup-Hardware [317]</u> Communication [318] dialog under TTL IO / Analog Out. # Digital output For interaction iView X can send a TTL trigger signal every time the gaze data enters an Area of Interest (AOI) [408]. iView X must have a digital IO card installed to send signals. The signal is HIGH if the gaze position is inside of the AOI, and LOW if it is outside. See also: TTL Output [335]. To activate sending signals check Send Trigger. Back to I/O Interfaces 474). ### 11.2.8 Ethernet Input The network interface of the iView X system can be used to remotely control iView X. To activate this feature select **Ethernet** in the <u>Setup-Hardware</u> [রাসী <u>Communication</u> [রাষ্ট্রী dialog under **Remote**. Go to the Config tab 329 to set ethernet address and port. The remote control device can send a string via Ethernet to iView X. Before iView X understands commands you first have to activate reception by checking *Accept Remote Commands*. For an overview of available commands see Remote Command Reference You can test the ethernet connection using the <u>iRemote 444</u> tool. Back to I/O Interfaces 474. ### 11.2.9 Ethernet Output iView X is capable of sending commands via Ethernet. Optionally eye data can be sent together with the commands. To activate this feature select **Ethernet** in the <u>Setup-Hardware । Setup-Hardware | Setup</u> Go to the Config tab 329 to set ethernet address and port. As soon as the port is activated iView X starts sending command messages over the network, so the remote control device can interact. If you additionally want eye data being sent you have to check *Stream Data*. For an overview of available commands see Remote Command Reference You can test the ethernet connection using the <u>iRemote [444]</u> tool Back to I/O Interfaces 474). # 11.2.10 Analog Out Option If you purchased iView X with Analog Out option, gaze position, raw pupil and diameter data can be converted into analog voltage values and is then available as input for external voltage controlled devices, such as plotters etc. The analog signals are accessible through BNC connectors of the break-out cable which is connected to the D-sub 37 connector of the board. To use this option, an Analog Out Board 470 must be installed. Go to Setup-Hardware 317 Communication 318 and select PIO DA under TTL IO / Analog Out. To configure Analog Out click on Config 336. To enable data output check Activate Output. Back to I/O Interfaces 474). ### 11.3 Remote Commands The remote command interface is an OS-independent, language-independent, protocol-oriented programming interface. It consists of a set of commands, with which iView X can be controlled by other computers. The following describes the command format and gives an overview of available commands: Remote Command Format 484 Remote Command Reference 484 #### 11.3.1 Remote Command Format Only standard ASCII characters are used for the remote control command set. All remote control commands start with "ET_" followed by 3 more characters which indicate the associated action. Optional parameters may follow, separated by a single
blank character (20h) each. The command is completed by a line feed (LF = 0x0A = \n') character. Command execution starts directly after one of the terminating characters is received. #### 11.3.2 Remote Command Reference Overview of available commands: | | Calibration | |------------|---| | ET CAL 489 | Starts calibration 191. | | ET ACC 487 | Accepts calibration point. | | ET BRK 489 | Cancels calibration. | | ET CHG 490 | Indicates calibration point change. | | ET CPA 492 | Sets and gets calibration parameters | | ET CSZ 493 | Sets size of calibration area. | | ET DEF 494 | Resets calibration points to default positions. | | ET_FIN 497 | Reports end of calibration. | | ET LEV 503 | Sets check level for calibration. | | ET PNT 503 | Sets position of calibration point. | | ET RCL 506 | Starts drift correction 315. | | ET VLS 518 | Validates calibration accuracy. | | ET VLX 519 | Starts extended calibration validation. | | ET RES 507 | Requests calibration results. | | ET CSP 493 | Reports calibration points. | | | Eye data recording | |------------|---| | ET_REC 506 | Starts data recording. | | ET CNT49剂 | Continues recording after pause. | | ET_INC 502 | Increments trial number during recording. | | ET PSE 505 | Pauses data recording. | | ET_STP 517 | Stops data recording. | | ET QRS 505 | Queries recording state. | | ET AUX488 | Stores auxiliary data. | |------------|------------------------------------| | ET_CLR 491 | Clears internal data buffer. | | ET REM 507 | Sends a remark to the data buffer. | | ET_SAV 508 | Saves data buffer to a data file. | | | Video recording commands | |------------|-----------------------------| | ET VRE 520 | Starts video recording. | | ET_VST | Stops video recording. | | ET VCL 518 | Clears video buffer. | | ET_VSV 521 | Saves video buffer to file. | | | Data output | |------------|---------------------------------| | ET STR 517 | Starts data streaming. | | ET_EST 497 | Stops data streaming. | | ET FRM 500 | Sets format for data output. | | ET_SPL 513 | Reports data sample generation. | | | Eye video image commands | |------------|-----------------------------------| | | Starts eye video streaming. | | ET_EIM 511 | Stops eye video streaming. | | ET_IMG 51引 | Reports eye video image transfer. | | | Starts eye image recording. | | ET EVE 497। Stops eye image recording. | |---| | ET EQE 494 Records eye images during RED calibration. | | | Scene video image commands | |------------|-------------------------------------| | ET SSV 514 | Starts scene video streaming. | | ET_ESV 514 | Stops scene video streaming. | | ET SVF 514 | Reports scene video image transfer. | | | Online Fixation Detection | |------------|-----------------------------------| | ET_FIX 497 | Starts online fixation detection. | | ET EFX 494 | Stops online fixation detection. | | | Other commands | |---------------|--| | ET_AAD | Auto Adjustment for hi-speed devices (>= 500 Hz) | | ET AOI 488 | Loads an <u>AOI</u> ⁴⁰⁸ file. | | ET_BED
488 | Requests or changes binocular eye distance for hi-speed devices (>= 500 Hz). | | ET BMP
489 | Loads Windows bitmap file. | | ET_CFG
490 | Shows system configuration. | | ET EXE 497 | Executes an application. | | ET_INF 502 | Returns information on the current used eye tracker. | | ET PNG
503 | Tests whether iView X is reachable. | | ET_SFT 509 | Controls eye tracker parameters | | ET ST 517 | Sets the default directory for stimulus images. | | ET_SRT 514 | Returns current sample rate. | #### Realtime and non-realtime commands The following commands are processed in real time: ET INC 502 Increments trial number. ET REM 507 Sends a remark to the data buffer. All other *non real time* commands will be put in a message queue and will be processed consecutively. A delay of 10 ms or less may be possible. #### 11.3.2.1 ET AAD Available only for Hi-Speed [191] systems with a sampling rate of 500 Hz or higher. If sent, an automatic adjustment process will be started, in which the camera image will be balanced and the pupil detection threshold will be set Parameters: none Success: ET_AAD after automatic adjustment process has been completed. Back to overview 484. # 11.3.2.2 ET_ACC Accepts the current calibration point during the calibration process, and switches to the next calibration point. Returns the number of the next calibration point if successful. Available only during calibration. Parameters: none Success: ET_CHG next_cal_point# The command is sent by iView everytime a calibration point is accepted during calibration, either manually by the user or automatically. Back to overview 484. ### 11.3.2.3 ET AOI Loads an Areas of Interest (AOI 408) definition file. #### Parameters: filename with or without path #### **Example:** ``` ET_AOI "D:\test.rgn" ``` Back to overview 484. #### 11.3.2.4 ET AUX Puts a message into the data buffer (same as <u>ET_REM</u> 507). Only included for compatibility reasons. Parameters: aux_data (string) #### Example: ET AUX "hello world" Back to overview 484. ### 11.3.2.5 ET_BED Requests or changes binocular eye distance for hi-speed devices. Parameters: value #### Example: ET_BED 10 Back to overview 484. ### 11.3.2.6 ET_BMP Loads a bitmap file (.BMP) from a drive and displays it in the scene view. If no path is given, iView will search the images in a default directory. The default directory can be set with the ET ST 517 command. #### Example with path: ``` ET BMP "C:\My Files\Pictures\image01.bmp" ``` #### Example without path: ``` ET BMP "image01.bmp" ``` Back to overview 484. ### 11.3.2.7 ET_BRK Cancels the calibration procedure. Parameters: none #### Success: ET BRK The command is sent by iView everytime a calibration is cancelled. Back to overview 484. # 11.3.2.8 ET_CAL Starts a calibration. Returns calibration information if successful. #### Parameters: - 2: starts a 2-point calibration - 5: starts a 5-point calibration - 9: starts a 9-point calibration - 13: starts a 13-point calibration Optional parameter only for binocular mode: right eye left eye #### Success: ``` ET_CAL n ET_CSZ x y ET_PNT i xi yi (for all calibration points) ET_CHG current_cal_point ``` #### Examples: ``` ET_CAL 9 ET CAL 13 2 ``` The command is sent by iView everytime a calibration is started. Back to overview 484. #### 11.3.2.9 ET CFG Shows the current system configuration, including calibration type, position of calibration points, size of calibration area etc. Parameters: none #### Success: ``` ET_CAL n ET_CSZ x y ET PNT i xi yi (for all calibration points) ``` Back to overview 484. # 11.3.2.10 ET_CHG Indicates calibration point change. Available only during calibration. Parameters: cal_point_number #### Success: ``` ET_CHG cal_point ``` The command is sent by iView everytime the system changes between calibration points. Back to overview 484. ### 11.3.2.11 ET_CLR Clears the internal data buffer. Parameters: none #### Success: ET CLR The command is sent by iView everytime the user creates a new file. You can send this command to iView to clear the internal buffer. This command cannot be sent during recording. Back to overview 484. # 11.3.2.12 ET_CNT Continues a recording without incrementing the trial number. Available only when recording is paused. Optional parameter: text ### Example: ``` ET_CNT "any text" ``` iView X will send ET_REC back and generates the following message in the data file: <Timestamp> MSG # Message: any text #### Success: ET_REC See also: ET REM 507 Back to overview 484. ## 11.3.2.13 ET CPA Sets and gets calibration parameters. Parameters: parameter type, value Depending on the parameter type, the value has a different meaning: | | parameter type / value | 0 | 1 | |---|------------------------|------|------| | 0 | wait for valid data | off | on | | 1 | randomize point order | off | on | | 2 | auto accept | off | on | | 3 | calibration speed | slow | fast | If no value is given, only the current status is returned. #### **Example:** ET CPA 1 1 #### Result: Switches on "Randomize point order" and returns current status. #### Example: ET CPA 1 #### Result: Returns current status of "Randomize point order". #### **Example:** ET_CPA 3 1 #### Result: Sets calibration speed to Fast and returns current status. Back to overview 484. ## 11.3.2.14 ET_CSP Send by iView X after an ET RES 507 command is received. ET_CSP reports the gaze data acquired for a specific calibration point. Parameters: timestamp, eye_type, x, y with timestamp: timestamp at which the gaze point is taken eye type: eye type information, possible values: l: left r: right b: binocular x x gaze data for monocular data x (left), x (right) for binocular data y y gaze data for monocular data y (left), y (right) for binocular data If data is binocular, the data is doubled for left and right pupil. First left x and right x data, then left y and right y data will be sent. ## 11.3.2.15 ET CSZ Sets the size of the calibration area. #### Parameters: sizeX sizeY #### Success: ET_CSZ sizeX sizeY The command is sent by iView X when the size of the calibration area is changed. #### **Example:** ET_CSZ 800 600 Back to overview 484. ## 11.3.2.16 ET DEF Sets all calibration points to default positions. Parameters: none Back to overview 484. ## 11.3.2.17 ET EFX If sent to iView X: Stops online fixation detection. This function does not take parameters. If sent by iView X: Announces end of current detected fixation. This command is followed by a list of result values. See <u>ET_FIX</u>[497] for details. Back to overview 484. ## 11.3.2.18 ET_EQE Performs eye image recording for quality evaluation 427. The eye images are recorded during a RED 165 calibration. | Syntax | Meaning | | |----------|------------------------|--| | ET_EQE | requests current state | | | ET_EQE 0 | disables recording |
 | ET_EQE 1 | enables recording | | ## Back to overview 484. ## 11.3.2.19 ET_EVB Starts eye image recording. Recording will be stopped with ET EVE [497]. ## Syntax: ``` ET_EVB IFT filename ET_EVB IFT filename path ET_EVB IFT filename path duration ``` #### with #### IFT: Image file type. It can have one of the values: | IFT | file type that will be created | |-----|--------------------------------| | 0 | JPG | | 1 | BMP | | 2 | XVID | | 3 | HUFFYUV | | 4 | ALPARY | | 5 | XMP4 | #### filename: File base name. File name containing spaces must be in quotation marks. After the base name the following information will be automatically added to the file name, separated with an underline "_": - . image number - . offset (x component) - . offset (y component) - . size in pixels (x component) - . size in pixels (y component) - . timestamp If no path is given, eye images will be saved in the *eyelmages* subfolder of the iView X installation directory. #### path: Path in which the eye images are stored. Paths containing spaces must be in quotation marks. - . If a path without a drive letter is given, the path will be created as a subdirectory of the iView X installation directory. - . If the path starts with a drive letter, it is regarded as the full path in which the eye images are saved. #### duration: Duration in [ms] of the recording. After the duration time has elapsed recording stops automatically and iView X sends an ET_EVE. - . Without a duration given, the images will be immediately recorded to hard disk. Image loss is possible. - . If a duration is given recording will be buffered. No images will be lost. ## Examples: ``` ET_EVB 0 my_file ET_EVB 0 "my file" "my path" ET_EVB 0 "my file" "C:\my path" 10000 ``` ## 11.3.2.20 ET EVE Stops eye image recording. Recording will be started with ET EVB 4951. Back to overview 484. ## 11.3.2.21 ET EST Stops continuous data output (streaming). Parameters: none Back to overview 484. ## 11.3.2.22 ET EXE Executes an application. Example: ET EXE "MyApplication.exe" Back to overview 484. ## 11.3.2.23 ET_FIN The command is sent by iView X when a calibration has finished successfully. Back to overview 484. ## 11.3.2.24 ET_FIX Starts online fixation detection. To stop fixation detection use ET EFX 4941. Parameters: duration dispersion duration: minimum fixation duration in [ms] dispersion: maximum dispersion in [px] or [°deg]. Data unit is [px] for non head tracking systems and [°deg] for head tracking systems. Example: ET_FIX 300 20 #### Result Values: ``` ET_FIX eye posX posY ``` If a start of a fixation is detected, iView X returns ET_FIX with a list of result values. This message is sent at least *duration* ms after the actual start of the fixation. eye: eye type, I or r posX, posy: x,y coordinate of mean gaze position between start of fixation and current point in time in [px] ET_EFX eye duration posX posY If the end of a current fixation is detected, iView X returns ET_EFX with a list of result values. eye: eye type, I or r duration: total duration of fixation in [ms] posX, posy: mean gaze position between start and end of fixation in [px|mm]. If no plane was hit, this value is (0,0). ## Result Values (head tracking): ET_FIX eye eyeBallX eyeBallY eyeBallZ gazeVec0 gazeVec1 gazeVec2 posX posY plane If a start of a fixation is detected, iView X returns ET_FIX with a list of result values. This message is sent at least *duration* ms after the actual start of the fixation eye: eye type, I or r eyeBallX, eyeBallY, eyeBallz: mean eyeball position between start of fixation and current point in time in [mm] gazeVec0 gazeVec1 gazeVec2: mean gaze vector between start of fixation and current point in time posX, posy: mean gaze position between start of fixation and current point in time in [mm]. If no plane was hit, this value is (0,0). plane: number of plane. If no plane was hit, this value is -1 ET_EFX eye duration eyeBallX eyeBallY eyeBallZ gazeVec0 gazeVec1 gazeVec2 posX posY plane If the end of a current fixation is detected, iView X returns ET_EFX with a list of result values. eye: eye type, I or r duration: total duration of fixation in [ms] eyeBallX, eyeBallY, eyeBallz: mean eyeball position between start and end of fixation ### in [mm] gazeVec0 gazeVec1 gazeVec2: mean gaze vector between start and end of fixation posX, posy: mean gaze position between start and end of fixation in [mm]. If no plane was hit, this value is (0,0). plane: number of plane. If no plane was hit, this value is -1 ## Back to overview 484 ## 11.3.2.25 ET FRM Sets data format for data output. The syntax is similar to the 'C' string formatting syntax. The format specification string is enclosed in quotation marks. Each format specifier is marked by a preceding percentage (%) symbol. ## Parameters: format_string ## Format specifiers: TS: timestamp in milliseconds (0 ...2⁶⁴/1000 ms) TU: timestamp in microseconds (0 ...2⁶⁴ μs) DX DY: pupil diameter (0 ...2³² pixels) x 32 - DX, DY: pupil diameter (0 ... 2⁵¹ pixels) x 32 - PX, PY: pupil position (± 2³¹ pixels) x 32 - CX, CY: corneal reflex position (±231 pixels) x 32 - SX, SY: gaze position (± 2³¹ pixels) - SC: scene counter - ET: eye type information, possible values: leftleft l: left leftleft r: right leftleft b: binocular ## for Head Tracking only: - EX, EY, EZ: eye position (\pm 99.999 mm) relative to the transmitter #### cube - GX, GY, GZ: normalized gaze vector (± 1.000000) - HX, HY, HZ: head position (\pm 99.999 mm) relative to the transmitter cube - HA, HE, HR: head rotation (± 180.00_o) given in degrees as azimuth (A), elevation (E) and roll (R). - IP: plane number that was hit by the gaze (1...16) for RED 4 (FireWire) systems only: - PD: returns pupil diameter for left and right eye in [mm] and a validity value (1 = valid, 0 = not valid) leftleft result: ET_SPL LeftDiameter RightDiameter Validity If data is binocular, the data is doubled for left and right pupil. First left x and right x data, then left y and right y data will be sent. #### Example for monocular data: ``` ET_FRM "%TS: %SX, %SY" ``` #### Result: ET SPL 28437864110: 400, 202 #### Example for binocular data: ET_FRM "%ET %SX %SY" #### Result: ET SPL b 399 398 200 199 where the data output is as follows: eye type binocular, left SX right SX left SY, right SY See also ET SPL 513. ## 11.3.2.26 ET_INC Increments trial number during recording. If recording is not running, the command is inactive. Returns new trial number if successful. Parameters: none Success: ``` ET_INC <new trial number> ``` The command is sent by iView X every time the trial number is incremented. Back to overview 484. ## 11.3.2.27 ET INF Returns information on the current used eye tracker. # Syntax Result ET_INF ver version number: major.minor.build ET_INF dev device name Device name can be one of the following: Hi-Speed Hi-Speed Primate HED 4 (USB) RED MRI-LR MRI-SV MRI-NNL Custom ## 11.3.2.28 ET_LEV Sets check level for calibration. Returns the new check level if successful. #### Parameters: 0: none 1: weak 2: medium 3: strong #### Success: ET LEV < new check level> #### Example: ET LEV 2 Back to overview 484. ## 11.3.2.29 ET_PNG Tests whether iView X is reachable ('ping'). If iView X has been reached, it sends an ET PNG back. #### Example: ET_PNG #### Result: ET PNG ## 11.3.2.30 ET_PNT Sets the position of a given calibration point. (Not available for RED 165) systems.) Parameters: point_number XY point_number: a value from 1 to 13 X: x coordinate on the screen in pixelsY: y coordinate on the screen in pixels The origin of the coordinate system lies in the upper left corner. The points are enumerated as follows: ## Example: ET_PNT 1 400 300 Result: the first calibration point will be moved to the position 400 pixels to the right and 300 pixels down from the upper left corner. ## 11.3.2.31 ET PSE Pauses the current data recording. The recording may be continued with the ET_CNT command. Parameters: none #### Success: ET_STP Back to overview 484. ## 11.3.2.32 ET QRS Queries recording state of eye data and scene video. Return values: <eye data recording state> <scene video recording state> The recording states can take the values: NOT_READY READY RECORDING FINISHED Parameters: none ## Example: ET_QRS #### Returns: ET_QRS READY NOT_READY In this example scene video recording is not available. ET ORS FINISHED FINISHED In this example eye data and scene video have been recorded, but not yet saved. Back to overview 484. #### 11.3.2.33 ET RCL Starts drift correction 315. Only available for Hi-Speed 1911 systems. Drift correction is available after a calibration of the system. The calibration is started with $ET_{CAL} \times_{[489]}$, where x is the number of calibration points. ET_CAL returns in the ET_{PNT} line the position of the calibration points in x,y coordinates of the <u>calibration arealles</u>. Drift Correction uses the first point, which is usually the center point, as calibration point. The position can be obtained through the ET_CAL call in the line starting with "ET_PNT 1" Back to overview 484. ## 11.3.2.34 ET_REC Starts a recording. On start the trial number is incremented. The optional duration parameter specifies the length of the recording in seconds. If not set, the recording must be stopped manually using the ET STP command. Parameters: duration Example: ET REC 5 Success: ET REC ## 11.3.2.35 ET REM Puts user-defined text lines into the eye data stream during recording. The text will be linked to the eye data sample acquired directly after the last character has been received. Parameters: text Example: ET_REM "any text" iView X generates the following message in the data file: ``` <Timestamp> MSG # Message: any text ``` See also: Message Output Format 305 Back to overview 484. ## 11.3.2.36 ET_RES Requests iView X for calibration results and returns the gaze data acquired for a specific calibration point. Parameters: none #### Result: ``` ET_PNT number x y ET_CSP timestamp eye_type gaze_x gaze_y ...
ET_RES ``` #### with ``` number: number of calibration point ``` eye type: eye type information, possible values: I: left ``` r: right b: binocular gaze_x x gaze data for monocular data x (left), x (right) for binocular data gaze_y y gaze data for monocular data y (left), y (right) for binocular data ``` If data is binocular, the data is doubled for left and right pupil. First left x and right x data, then left y and right y data will be sent. #### Example for binocular data: ``` ET RES ``` #### Result: ``` ET_PNT 1 640 512 ET_CSP 68343004 b 242 242 336 336 ... (all samples for point 1) ET_PNT 2 64 51 ... ET_RES ``` #### See also: ``` ET_PNT 503 ``` ## 11.3.2.37 ET_SAV Saves data file. Data is saved in binary format. Use the <u>IDF Converter[285]</u> to convert to ASCII format. The first parameter is the filename. More parameters are optional and must be set in a fixed order. Description and user information can be given. With the OVR command an already existing filename will be overwritten. If OVR is not set and the given filename already exists, the existing file will not be overwritten and the command will not be executed. Note that OVR must always be the 4th parameter, see examples below. ## Path specification The filename can be given with or without full path specification. If the filename is given without path specification, the file will be stored in the in the iView X installation directory. ET SAV can also handle UNC syntax for Windows systems as follows: ``` \\ComputerName\SharedFolder\Resource\name IDF. ``` #### Parameters: filename with or without path #### Optional parameters in fixed order: description user OVR ## Examples: ``` ET_SAV "test.idf" ET_SAV "c:\iViewX\test.idf" ET_SAV "c:\iViewX\test.idf" "my description" ET_SAV "c:\iViewX\test.idf" "" "my user" ET_SAV "c:\iViewX\test.idf" "" "OVR" ET_SAV "c:\iViewX\test.idf" "my description" "my user" "OVR" ET_SAV \\my_computer\Docs_Exchange\test.idf ``` ## Back to overview 484. ## 11.3.2.38 ET_SFT Command to remotely control the tracker parameters [380]. Parameters: eye type, parameter type, value with eye type: 0: left eye1: right eye #### parameter type: - 0: Pupil Threshold - 1: Reflex Threshold - 2: Show AOI On/Off - 3: Show Contour On/Off - 4: Show Pupil On/Off - 5: Show Reflex On/Off - 6: Dynamic Threshold On/Off - 11: Pupil Area [min max] - 12: Pupil Perimeter [min max] - 13: Pupil Density [min max] - 14: Reflex Perimeter [min max] - 15: Reflex Pupil Distance [min max] ## Examples: ``` ET_SFT 0 0 136 ET_SFT 0 11 100 3000 ``` If the third parameter is missing ET_SFT returns range [min max] and current setting [min max]. ## 11.3.2.39 ET_SIM, ET_EIM, ET_IMG: Eye Video Streaming Remote Command Usage The client software uses the following <u>remote commands</u> [483] to control the eye video transfer: ET SIM ET EIM ET_IMG The workflow is as follows: Start eye video streaming with ET_SIM Please note that the resulting frame rate is limited to 15Hz and may differ due to network traffic limitations. Stop eye video streaming with ET_EIM As soon as the eye video streaming has been started, iView X notifies the client about new eye video frames. ET_IMG WIDTH HEIGHT ENCODED_SIZE WIDTH and HEIGHT specify the eye video image parameters. ENCODED_SIZE specifies the size of of the data in byte. The ET_IMG notification is followed by a datagram containing the MIMEencoded image data. Under certain circumstances, the image data may be splitted into a number of datagrams due to limitations of datagram size. In that case, the datagrams have to be merged before decoding. ## **MIME Decoding Example** MIME Decoding can be implemented using a 3rd party library. The following C/C++ code samples depend on a free library from http://www.codeproject.com/KB/string/ammimeutils.aspx The client has to process the following steps to receive a scene image: 1. Parse the ET_IMG notification and store the parameters for image width and height and the expected datagram length ``` if (line.Left(6).Compare("ET_IMG") == 0) { ``` ``` // process the remaining parameters of ET_IMG // assuming the parameters are stored in the array substr width = atoi(substr[1]); height = atoi(substr[2]); } ``` 2. Receive the datagram containing image data ``` pEncodedImg = ReadBuffer(); ``` 3. Decode image data ``` CBase64Utils bu; int decoded = size; // decode the mime image; char* pDecodedImg = bu.Decode(pEncodedImg, &decoded); ``` #### Requirements Eye Video Streaming is available for the HED 4, HiSpeed, MRI and MEG Devices and requires iView X 1.7 or newer. See also: Video Streaming 449 ## 11.3.2.40 ET SPL The command is sent by iView everytime a data sample is generated and data streaming is on. The format of the data sample output is set with the <u>ET_FRM [500]</u> command. ## 11.3.2.41 ET SRT Returns current sample rate. Back to overview 484). ## 11.3.2.42 ET_SSV, ET_ESV, ET_SVF: Scene Video Streaming Remote Command Usage The client software uses the following <u>remote commands</u> 4831 to control the scene video transfer: ET_SSV ET_ESV ET SVF The workflow is as follows: Start scene video streaming with ET_SSV With an optional parameter you may specify a desired frame rate: ET SSV FRAMERATE Please note that the resulting frame rate may differ due to network traffic limitations. Stop scene video streaming with ET_ESV As soon as the scene video streaming has been started, iView X notifies the client about new scene video frames. ET SVF WIDTH HEIGHT LENGTH WIDTH and HEIGHT specify the scene video image parameters; LENGTH describes the total length of the compressed image. The ET_SVF notification is followed by a datagram containing the actual image data. The size (in bytes) of this datagram corresponds to the parameter LENGTH from the ET_SVF message. To reduce network load, image data arrives in a JPEG compressed format. Under certain circumstances, the image data may be splitted into a number of datagrams due to limitations of datagram size. In that case, the datagrams have to be merged before decompression. ## JPEG Decompression Example JPEG Decompression can be implemented using a 3rd party library. The following C/C++ code samples depend on a free library from http://www.smalleranimals.com/jpegfile.htm and OpenCV. The client has to process the following steps to receive a scene image: Parse the ET_SVF notification and store the parameters for image width and height and the expected datagram length ``` if (line.Left(6).Compare("ET_SVF") == 0) { // process the remaining parameters of ET_SVF // assuming the parameters are stored in the array substr width = atoi(substr[1]); height = atoi(substr[2]); jpeg_comp_size = atoi(substr[3]); } ``` 2. Receive the datagram containing image data ``` pCompressedImg = ReadBuffer(jpeg_comp_size); ``` 3. Create a buffer for the uncompressed image ``` pUncompressedImg = cvCreateImage(cvSize(width, height), 8, 3); ``` 4. Decompress image data ``` CJPEGCompression::lowLevelDecode((unsigned char *) pUncompressedImg->imageData, &width, &height, (unsigned char*) pCompressedImg, ``` ``` jpeg_comp_size); ``` #### Requirements Scene Video Streaming is available for the HED 4 system only and requires iView X 2.1 or newer. See also: Video Streaming 449 ## 11.3.2.43 ET STI Sets the default directory for stimulus images. All subsequent calls of ET BMP [489] will search for the images in this directory. #### Example: ``` ET_STI "C:\Temp" ``` Back to overview 484. ## 11.3.2.44 ET_STP Stops the current recording. Parameters: none Success: ET STP Back to overview 484. ## 11.3.2.45 ET_STR Starts continuous data output (streaming) using the output format specified with the ET_FRM command. Optionally, the frame rate can be set at which the data will be streamed. Parameters: (optional) frame rate in Hz frame rate values: 1...<sample rate of system> #### **Examples:** ET_STR ET_STR 10 Success: data stream Back to overview 4841. ## 11.3.2.46 ET_VCL Clears the video buffer. Parameters: none Back to overview 484. ## 11.3.2.47 ET VLS Performs a validation of the calibration accuracy. This command is available only if a successful calibration has been performed previously. The result shows the accuracy of the calibration and therefore indicates its quality. With the return values you can estimate before starting the experiment, how good the measurement will be. Return values: eye, x, y, d, xd, yd If successful, returns: - eye: left or right - x, y: RMS (root mean square) values for the x and y components of the deviations - d: RMS of the deviating distances - xd, yd: mean deviation in degrees of x and y components The units will be in pixels (standard systems) or in mm (HT systems). #### Parameters: none #### Example: ET_VLS #### Returns for monocular: ``` ET_VLS left 16.2 16.3 20.4 0.5 0.5 ``` #### Returns for binocular: ``` ET_VLS left 16.2 16.3 20.4 0.5 0.5 ET VLS right 15.2 16.1 20.5 0.5 0.5 ``` See also: Validation 73. Back to overview 484. ## 11.3.2.48 ET VLX Performs an extended calibration validation of a single point. This command is available only if a successful calibration has been performed previously. The result shows the accuracy of the calibration and therefore indicates its quality. With the return values you can estimate before starting the experiment, how good the measurement will be. #### Parameters: x y: x and y coordinates of a point. A remote application starts a validation with In case of an error it returns: ET_VLX If no error occurs, iView X starts with its fixation analysis. Data will be returned either - . after a certain time if "accept points automatically" is selected or - -. if ET ACC is sent to iView X. #### Result: ``` ET_VLX xl yl dxl dyl xr yr dxr dyr ``` #### with - xI, yI, xr, yr: RMS (root mean square) values for the x and y components of the deviations for left (I) or right (r) eye. - dxl, dyl, dxr, dyr: mean deviation
in degrees of x and y components for left (I) or right (r) eye. The units will be in pixels (standard systems) or in mm (HT systems). #### See also ``` ET VLS 518 ``` Back to overview 484. ## 11.3.2.49 ET_VRE Starts video/MPEG recording. Back to overview 484. ## 11.3.2.50 ET_VST Stops video/MPEG recording. ## 11.3.2.51 ET VSV Saves video buffer to file. With the optional OVR command an already existing filename will be overwritten. If OVR is not set and the given filename already exists, the existing file will not be overwritten and the command will not be executed. #### Path specification The filename can be given with or without full path specification. If the filename is given without path specification, the file will be stored in the iView X installation directory. The default #### Parameters: filename with or without path #### Optional parameter: OVR ## **Examples:** ``` ET_VSV "test.mpg" ET_VSV "c:\iViewX\test.mpg" ET_VSV "c:\iViewX\test.mpg" "OVR" ``` ## **Known Limitations** ## 12 Known Limitations Here are some known limitations listed. ## 12.1 Changing screen resolution Do not change screen resolution while iView X is running. If you do so, the system will freeze and the computer must be rebooted. This behaviour cannot be fixed. If you need to change the screen resolution, close the iView X application first, before doing the changes. ## 12.2 iView X and NetMeeting Do not use NetMeting on the iView X computer. NetMeeting causes a driver malfunction, after which the graphics adapter will not work. ## 12.3 iView X and virus scanner Do not use a virus scanner as a background task. Instead, set your virus scanner to a scheduled scan policy. ## **Abbreviations** ## 13 Abbreviations AOI Area of Interest ASCII American Standard Code for Information Interchange, character encoding CR cornea reflex fMRI functional Magnetic Resonance Imaging HDD Hard Disk Drive HED Headmounted Evetracking Device HT Head Tracking HMD Head Mounted Display IEEE Institute of Electrical and Electronics Engineers IO in / out IP Internet Protocol JPG an image file format using a lossy compression method MEG Magnetoencephalography MHT Magnetic Head Tracker MPEG Moving Picture Experts Group for audio/video encoding standards MRI Magnetic Resonance Imaging NTSC National Television Systems Committee, video standard PAL Phase Alternate Line, video standard POR Point Of Regard RAM Random Access Memory RED Remote Eyetracking Device ROI Region of Interest TCP Transmission Control Protocol, internet protocol TTL Transistor-Transistor-Logic UDP User Datagram Protocol, internet protocol UTC Coordinated Universal Time WLAN Wireless Local Area Network XviD a video codec using a lossy compression method ## **Declaration of Conformity** ## 14 Declaration of Conformity The following lists our declarations of conformity. ## 14.1 Declaration of Conformity HED 4 ### **DECLARATION OF CONFORMITY** Type of Product: Eyetracking Equipment iView X™ Product Name: Model Designation: HED 4 Manufacturer: SensoMotoric Instruments GmbH Warthestr. 21 14513 Teltow Germany This product complies with the requirements of the following European directives: 89/336/EEC Directive of the council on the approximation of the laws of the Member States relating to electromagnetical compatibility (EMC Directive) changed by directive 91/263/EEC, 92/263/EEC and 93/68/EEC of the council. Compliance was proved by the application of the following electromagnetic compatibility standards: EN 60601-1-2 + EN 55011, Class B Teltow, November 2007 SensoMotoric Instruments GmbH Dr. Winfried Telwes Managing Director ### **Declaration of Conformity RED 4** 14.2 (FireWire) #### DECLARATION OF CONFORMITY Type of Product: **Eyetracking Equipment** Product Name: Model Designation: IVIew X™ RED 4 Manufacturer: SensoMotoric Instruments GmbH Warthestr. 21 14513 Teltow Germany This product complies with the requirements of the following European directives: 89/336/EEC Directive of the council on the approximation of the laws of the Member States relating to electromagnetical compatibility (EMC Directive) changed by directive 91/263/EEC, 92/263/EEC and 93/68/EEC of the council. > Compliance was proved by the application of the following electromagnetic compatibility standards: EN 60601-1-2 + EN 55011, Class B Teltow, November 2007 oMotoric Instruments GmbH Dr. Winfried Telwes Managing Director ## 14.3 Declaration of Conformity Hi-Speed #### 14.4 **Declaration of Conformity MEG** ### **DECLARATION OF CONFORMITY** Type of Product: Eyetracking Equipment Product Name: Model Designation: Wiew X MEG Manufacturer: SensoMotoric Instruments GmbH Warthestr. 21 14513 Tellow Germany This product complies with the requirements of the following European directives: 89/336/EEC Directive of the council on the approximation of the laws of the Member States relating to electromagnetical compatibility (EMC Directive) changed by directive 91/263/EEC, 92/263/EEC and 93/68/EEC of the council. > Compliance was proved by the application of the following electromagnetic compatibility standards: EN 60601-1-2 + EN 55011, Class B Teltow, December 2007 ensoMotoric Instruments GmbH Dr. Winfried Telwes Managing Director ## 14.5 Declaration of Conformity MT-LR ## **Declaration of Conformity** Type of Product: Product Name: Eyetracking Equipment iView X Model Designation: MEyeTrack-LR Manufacturer: SensoMotoric Instruments GmbH Warthestr. 21 14513 Teltow Germany This product complies with the requirements of the following European directives: 89/336/EEC Directive of the council on the approximation of the laws of the Member States relating to electromagnetical compatibility (EMC Directive) changed by directive 91/263/EEC, 92/263/EEC and 93/68/EEC of the council. Compliance was proved by the application of the following electromagnetic compatibility standards: EN 61326-1:1997 + EN 61326/A1:1998 + EN 61326/A2:2001 Teltow, Jan 04, 2006 SensoMotorie Instruments GmbH Dr. Winfried Teiwes Managing Director # Index | - | Α | _ | |---|---|---| |---|---|---| abbreviations 525 About Tracker Properties 380 about eye tracking 15 About iView 399 Accept Points Automatically 342 add/remove components 33 adjust eye video HED 4 89 HED-MHT 124 Hi-Speed 211 Hi-Speed Primate 231 MRI-LR 258 Adjust Scene Cursor 91 adjust scene video HED 4 90 adjustment panel Hi-Speed 213 advanced eye image adjustment 402 AGC 379 alignment helmet sensor HED-MHT 125 **Analog Out** setup hardware 336 Analog Out Board 470 analog out option 483 analysis 78 AOI configuration 388 general 408 how to draw 409 AOI of eye camera 382 ASCII file format 299 Audio Device Properties 413 Audio feedback on next point 342 audio recording FAQ 411 general 410 HED settings 326 setup guide for WinXP 413 Auto Accept 315 Auto Adjust 373, 375 Auto Balance 379 Average Data 342 ### - B - background operation mode 427 basic functions 58 BeGaze messaging 436 bilateral filter 339 BINOC 213 binocular data 339 binocular mode 427 bright pupil systems 17 Brightness 378, 379 built-In Event Detector 294 ### - C - cables and connectors Hi-Speed 199 calibration accept points manually and automatically 65 | calibration | Calibration Speed 342 | | |--|---|--| | analog gain offset calibration 403 basics 19 | calibration with calibration panel
HED 4 95 | | | calibration area 65 computer screen with static targets 70 different calibration processes 65 direct analog calibration 403 distance 65 HED 4 92 | calibration with laser pointer HED 4 96 | | | | calibration without calibration panel HED 4 96 | | | | camera adjustment
Hi-Speed 213
MRI-LR 252 | | | HED-MHT 127
light changes 65 | camera box
Hi-Speed Primate 225 | | | manual 71 manual and automated calibration 65 | camera zoom
MRI-LR 252 | | | moving calibration points 74 remote command 489 reset 74 setup 342 using Remote Commands 70 with SMI Experiment Center 69 with WinCAL 69 Calibration Area 66 Calibration Configuration view 387 calibration distance | cannot connect to RED 400 Check Level 342 chin rest adjustment 211 Clear Recording Buffer 312 clser*.dll missing 400 coil systems 17 COM port 478, 479 Communication setup hardware 318 compression 328 Configure Logging 395 connectors and switches | | | HED 4 93
Calibration menu 314 | e-box 140
MRI-LR 250 | | | calibration panel
RED 4 (FireWire) Document
Stand 155 | context menu
HED scene video 91 | | | calibration plane
HED-MHT 116 | Hi-Speed Scene Image 210
RED 4 (FireWire) scene image
145 | | | calibration setup MRI Silent Vision 263 | RED120/250/500 scene image | | | Contrast 379 | drift correction | |---------------------------------|---------------------------------| | Conversion Factor 351 | calibration menu 315 | | Copy Scene 91, 145, 173, 210 | general 72 | | copyright 11 | dual Purkinje systems 17 | | corneal reflex | Dynamic 373, 375 | | eye tracking method 22 | | | setup hardware 320 | -E- | | thresholds 386 | e-box 140 | | _ | Edit Points 316 | | - D - | Elapsed 368 | | dark pupil systems 17 | electrical oculography (EOG) 17 | | data mirroring | error messages 400 | | MRI-LR 256 | ET module | | setup hardware 321 | RED 4 (FireWire) 139 | | data recording 75 | RED120/250/500 168 | | automated 75 | ET_AAD 487 | | manual 77 | ET_ACC 487 | | declaration of conformity | ET_AOI 488 | | HED 4 528 | ET_AUX 488 | | Hi-Speed 530 | ET_BED 488 | | MEG 531 | ET_BMP 489 | | MEyeTrack-LR 532 | ET_BRK 489 | | MRI 532 | ET_CAL 489 | | RED 4 (FireWire) 529 | ET_CFG 490 | | diameter units 340 | ET_CHG 490 | | Digital I/O Board 466 |
ET_CLR 491 | | digital input 481 | ET_CNT 491 | | digital output 481 | ET_CPA 492 | | dimension U 108 | ET_CSP 493 | | dimension V 108 | ET_CSZ 493 | | Direct Calibration Controls 387 | ET_DEF 494 | | direction U 108 | ET_EFX 494 | | direction V 108 | ET_EIM 511 | | document version 2 | ET_EQE 494 | | ET EST 497 | ethernet 60 | |-----------------|--| | ET_ESV 514 | ethernet input 482 | | ET_EVB 495 | ethernet output 482 | | ET_EVE 497 | Event Detector | | ET_EXE 497 | configuration 290 | | _
ET_FIN 497 | tool 289 | | ET_FIX 497 | Exit 312 | | _
ET_FRM 500 | experiment setup | | ET_IMG 511 | MRI Silent Vision 262 | | _
ET_INC 502 | experimental setup | | ET_INF 502 | RED 4 (FireWire) Stand Alone | | ET_LEV 503 | 150 | | ET_PNG 503 | RED120/250/500 Stand Alone | | ET_PNT 503 | 178 | | ET_PSE 505 | experimental setup examples | | ET_RCL 506 | RED 4 (FireWire) 142 | | ET_REC 506 | RED120/250/500 170 | | ET_REM 507 | explanation of symbols 4 | | ET_RES 507 | eye assignment | | ET_SAV 508 | HED settings 326 | | ET_SFT 509 | Hi-Speed configuration 322 | | ET_SIM 511 | setup hardware 321 | | ET_SPL 513 | eye control | | ET_SRT 514 | Hi-Speed Primate 231 | | ET_SSV 514 | eye image adjustment | | ET_STI 517 | MEG 278 | | ET_STP 517 | Eye Image Control | | ET_STR 517 | binocular 375
monocular 373 | | ET_SVF 514 | view 372 | | ET_VCL 518 | | | ET_VLS 518 | eye image recording (debugging)
355 | | ET_VLX 519 | eye image recording for quality | | ET_VRE 520 | evaluation 427 | | ET_VST 520 | eye offset | | ET_VSV 521 | • | eve offset geometrical setup HFD-MHT 125 RED 4 (FireWire) Stand Alone eye tracking camera systems 27 RED120/250/500 Stand Alone Eye Video Recorder 428 178 eye video streaming 511 Geometry EvePC Board 466 setup calibration 347 Grab 377 - F -Grablink Board 463 Falcon Board 462 features and benefits - H -HFD 4 81 Hardware Hi-Speed 192 setup 317 MRI Silent Vision 242 hardware components MRI-LR 242 HED 4 83 RED 4 (FireWire) 137 HFD-MHT 101 RED120/250/500 166 Hi-Speed 203 File menu 309 Hi-Speed Primate 223 Files Section 347 MEG 271 Filter 339 RED 4 (FireWire) 138 Filter Depth 356 RED120/250/500 167 first direction 108 Hardware Gamma 91 fixation detection head movements 18 remote command 497 head tracking HED add to iView X fixations 16 119 FOCUS 213 HED 4 camera 84 foot end Hi-Speed 202 HED 4 scene camera lenses 85 further reading 20 HED settings 326 Help menu 396 - G -Help Topics 397 Gaze Cursor Filter 356 heuristic filter 339 Gaze Cursor Properties 357 high speed event detection 297 gaze path 16 Hi-Speed Configuration Gaze-following gain control 91 setup hardware 322 HED settings 326 Hi-Speed tracking column 194 HORIZONTAL 213 Input Filter Eye 339 Input Filter Head 341 hotkeys 399 How to draw an AOL 409 input via digital I/O 481 how to read this document 2 Introduction 2 iView X eye tracking method 22 - I iView X version 2 iView X workstation 23 I/O Interfaces 474 iviewx ini file 347 IDF Converter 285 ivs 430 **IDF** Converter Export Configuration 287 - K -IDF data section 303 IDF file 285 known limitations 523 IDF header 300 IDF text format 299 - 1 -IDF utilities 285 lasermeter calibration illumination controller HED-MHT 128 RED 4 (FireWire) 140 last updated 2 Image Adjust Latency Histogram 390 eye image control 378 licence agreement 5 Image Adjust Hi-Speed License eye image control 379 help 398 Image Adjust MRI licensing by email 32 eve image control 379 licensing process 31 Image Adjust... 373, 375 limit recording to 355 important notice 3 Linecut Increment Trial No. 313 Tracker Properties 384 initialization of software loading a setup file 430 HED 4 85 low speed event detection 295 HED-MHT 120 LPT port 479, 480 Hi-Speed 206 LPT port address Hi-Speed Primate 230 how to find the address 432 MEG 276 iView X setup 431 MRI-LR 256 RED 4 (FireWire) 143 RED120/250/500 171 setup hardware 324 view 377 #### MPEG Board 464 - M -MPEG recording 328 MRI Silent Vision 262 maintenance MRI-LR 245 HED 4 100 HED MHT 135 - N -Hi-Speed 219 Hi-Speed Primate 237 NetMeeting 523 MEG 283 **Network Configuration** MRI 269 setup hardware 329 RED 4 (FireWire) 161 network connection 60 RED120/250/500 187 **- O** measurement model HED-MHT 105 objects on a plane 115 menu 309 Online Data message output format 305 Graphic 370 messaging with BeGaze 436 Numeric 371 mirror Hi-Speed 201 view 370 modes of operation Open AOI... 310 MRI-LR 246 Open Calibration... 311 RED 4 (FireWire) 146 Open Scene Image 145, 173, 210 RED120/250/500 174 Open Scene Image... 310 Monitor-Head Distance 347 operating procedure MONOC 213 HED-MHT 124 mounting and connecting the MEG 276 Illumination Unit MRI-LR 255 MRI-LR 249 operational controls mounting the Mirror Box Hi-Speed 198 MRI-LR 247 Output Mouse Configuration 324 setup 354 mouse control output via digital I/O 481 view 377 Overlay Options 363 mouse mode Overlay Selection 362 general 438 Overlays Tracker Properties 381 #### pupil data 15 - P -Pupil Diameter 340 mouse control 377 parallax error Pupil Diameter Calibration 351 adjust scene video camera 90 pupil diameter in mm 351 select calibration distance 93 pupil only calibration 320 parallel input 479 pursuit 16 parallel output 480 Performance Measures 390 - Q -PIO-DA board 470 PIO-DIO board 466 quick start quide 40 HED 4 40 plane definition 108 Hi-Speed 52 plane origin 108 RED 49 plane properties 110 Planes and Misc. settings 347 - R planes.ini file 347 point of regard (POR) 15 Randomize Point Order 342 points on a plane 114 real world time messages 355 Polhemus configuration 325 realtime and non-realtime Polhemus Fastrak System 101 commands 484 ports 329 record and save HFD 4 97 power supply MRI-LR 259 HED-MHT 127 Presentation Record Gaze Cursor Overlay 368 messaging with BeGaze 436 Recorded Scene Video Size HED settings 326 primary event: fixation 295 primary event: saccade 297 Recording menu 312 primate camera 224 Recording Notes 364 Profile Recording Options 355 RED 4 (FireWire) Stand Alone recording time 355 150 RED 4 (FireWire) Configuration 323 RED120/250/500 Stand Alone RED Calibration Points 350 178 **RED Document Stand** view 395 RED 4 (FireWire) 153 Pupil **RED Monitor Integrated** thresholds 386 RED120/250/500 183 **RED Monitor Integrated** RED 4 (FireWire) 146 RED120/250/500 174 - S -RED Operation Mode 349 Saccade Length 356 **RED Stand Alone** saccades 16 RED 4 (FireWire) 149 safety notes RED120/250/500 177 HED 4 97 RED Stand Alone Geometric Setup HED MHT 131 350 Hi-Speed 215 **RED Tracking Monitor 391** Hi-Speed Primate 233 how to create 438 MEG 279 RED 4 (FireWire) 156 MRI 264 RED120/250/500 182 RED 4 (FireWire) 157 RED120/250/500 Configuration 323 RED120/250/500 183 rejection parameters 383 sample rate Remaining 368 HED settings 326 remote command Hi-Speed configuration 322 format 484 RED 4 (FireWire) configuration general 483 323 reference 484 RED120/250/500 configuration Remote Console 444 323 remote control Save AOI... 311 general system layout 23 Save Calibration... 311 Remote Video 446 save configuration 367 Reset Calibration Points 342 Save Data... 312 Reset to Original Size 91 Save Setup 367 reusable licence 36 scene camera offset RS232 Configuration 328 HED-MHT 125 run experiment Scene HT Calibration 352 Hi-Speed 214 Scene Video Hi-Speed Primate 233 setup output 358 MEG 279 Scene Video Compression 328 MRI Silent Vision 264 scene video streaming 514 MRI-LR 258 screen resolution change 523 RED 4 (FireWire) 157 second direction 108 | RED120/250/500 Stand Alone | |--| | 178 | | setup file 430 | | setup hardware 317 | | HED 4 85 | | Hi-Speed Primate 230
MEG 276
MRI-LR 256
RED 4 (FireWire) 143
RED120/250/500 171 | | Setup menu 316 setup output 354 setup scene overlays HED 4 85 Hi-Speed Primate 230 setup stimulus 342 setup tracking 339 shortcuts 399 Show AOIs 145, 173, 210 | | SMI 12 | | software installation 31 | | software setup
MRI Silent Vision 262 | | software update 36 | | Start calibration 314 recording 313 start program 60 Status Bar 369 Stimulus setup 342 Stimulus Physical Dimension 347 stimulus presentation 23 Stimulus Screen Resolution 347 | | | | Stop | Hi-Speed Tracking Column power | | |---|---|--| | calibration 315 | supply 220 | | | recording 313 | MRI-LR power supply 260 | | | Stretch View 145, 173, 210 | RED120/250/500 power supply 188 | | | Stylus receiver 128 | | | | supported stimulus software 75 | terminate licence 34 | | | surveying a single plane 111 | test person placement
Hi-Speed 211
RED 4 (FireWire) 156
RED120/250/500 182 | | | Surveyor 449 | | | | Switching between left, right and binocular 213 | | | | System Info 398 | thresholds | | | system layout 23 | CR Threshold 373, 375 | | | System Log | Pupil Threshold 373, 375 | | | Error 394 | tracker properties 386 | | | System 393 | time-limited licence 35 | | | User 392 | timing of stimulus and eyetracking | | | view menu 391 | events 443 | | | system output 28 | Tip of the day 399 | | | system user guide | Toolbar 368 | | | HED 4 80 | Tracking | | | HED-MHT 100 | eye image control 380 | | | Hi-Speed 191 | setup 339 | | | Hi-Speed Primate 222 | tracking column adjustment 211 | | | MEG 270 | tracking mode | | | MRI 240 | HED settings 326 | | | RED 4 (FireWire) 136 | RED 4 (FireWire) configuration | | | RED120/250/500 165 | 323 | | | | RED120/250/500 configuration 323 | | | - T - | trademarks 11 | | | Target Diameter 351 | transfer licence 33 | | | TCP/IP 329 | transmitter | | | technical data | HED-MHT 106 | | | e-box 162 | Trial 368 | | | Hi-Speed Primate power supply 238 | trigger signal | | | trigger signal | views | |---|---------------------------------|
| duration 476 | HED 4 85 | | general information 475 hexadecimal 477 | virus scanner 523 | | shape 476 | - W - | | state 476 | | | tripod controls | Wait for Valid Data 342 | | MRI-LR 252 | warnings 400 | | TTL Input for digital IO cards 331 | warranty 5
WinCal 449 | | TTL IO for LPT parallel port 333 | wiring | | TTL Output 335 | HED-MHT 101 | | Tutorials 398 | Hi-Speed 203 | | TX2 106 | Hi-Speed Primate 223 | | TX4 106 | Hi-Speed Primate camera 227 | | | MEG 271 | | - U - | WLAN connection | | UDP 329 | general 450 | | Use Hardware Gamma | setup guide (ad-hoc connection) | | HED settings 326 | 451 | | UTC 355 | workspace 308 | | - V - | | | - | | | validation | | | calibration menu 316 | | | general 73 | | | VERTICAL 213 | | | Vidac Board 464 | | | video format PAL/NTSC 321 | | | video recording 328 | | | video setup hardware 321 | | | video streaming
general 449 | | | general 443 | | View menu 367 view online data 370